
FISCO BCOS EN Documentation
Release v2.2.0

fisco-dev

Mar 17, 2020

Contents

1 Introduction 3

2 New features in 2.0 version 7

3 Compatibility 11

4 Installation 19

5 Tutorials 25

6 Manual (Revision in progress) 43

7 Enterprise deployment tool 179

8 Web3SDK 219

9 Blockchain browser 239

10 JSON-RPC API 247

11 FAQ (Revision in progress) 275

12 Community 279

i

ii

FISCO BCOS EN Documentation, Release v2.2.0

FISCO BCOS is a reliable, secure, efficient and portable blockchain platform with proven success from many
partners and successful financial-grade applications.

• Github homepage

• Insightful articles

• Code contribution

• Feedback

• Application cases

• WeChat group

• WeChat official account

Overview

• To fast build a blockchain system based on FISCO BCOS 2.0+, please read Installation

• To deploy multi-group blockchain and the first blockchain application based on FISCO BCOS 2.0+, please
read Quick Guide

• To know more about functions of FISCO BCOS 2.0+, please read Config files and items, Node access,
Parallel transactions, Distributed storage, OSCCA computing in Operation Tutorial

• Console：Interactive command tool to visit blockchain nodes and check status, deploy or call contract,
etc.

• Deployment tool(Generator)：to support operations like building blockchain, expansion, etc., recom-
mended for business level applications. You can learn the operation methods in Quick Guide

• SDK：offer APIs for node status, blockchain system configuration modification and nodes to send transac-
tions.

• The detailed introduction of browser is in Browser

• JSON-RPC interface is introduced in JSON-RPC API

• System design documentation: System design

Key features

• Multi-group: Quick Guide Operation Tutorial Design Documentation

• Parallel computing: Operation Tutorial Design documentation

• Distributed storage: Operation Tutorial Design documentation

Important:

• This technical documentation is only adaptable for FISCO BCOS 2.0+. For FISCO BCOS 1.3.x users,
please check Ver.1.3 Documentation

• The new features of FISCO BCOS 2.0+ are introduced here

• FISCO BCOS 2.0+ and its adaptability are illustrated here

Contents 1

https://github.com/FISCO-BCOS/FISCO-BCOS
http://mp.weixin.qq.com/mp/homepage?__biz=MzA3MTI5Njg4Mw==&hid=2&sn=4f6d7251fbc4a73ed600e1d6fd61efc1&scene=18#wechat_redirect
https://mp.weixin.qq.com/s/_w_auH8X4SQQWO3lhfNrbQ
https://github.com/FISCO-BCOS/FISCO-BCOS/issues
https://mp.weixin.qq.com/s/cUjuWf1eGMbG3AFq60CBUA
https://github.com/FISCO-BCOS/FISCO-BCOS-DOC/blob/release-2/images/community/WeChatQR%2Ejpg
https://github.com/FISCO-BCOS/FISCO-BCOS-DOC/blob/release-2/images/community/OfficialAccountsQR%2Ejpg
./docs/installation.html
./docs/tutorial/index.html
./docs/manual/configuration.html
./docs/manual/node_management.html
./docs/manual/transaction_parallel.html
./docs/manual/distributed_storage.html
./docs/manual/guomi_crypto.html
./docs/manual/index.html
./docs/manual/console.html
./docs/enterprise_tools/index.html
./docs/enterprise_tools/tutorial_one_click.html
./docs/sdk/index.html
./docs/browser/browser.html
./docs/api.html
./docs/design/index.html
./docs/manual/group_use_cases.html
./docs/manual/configuration.html
./docs/design/architecture/group.html
./docs/manual/transaction_parallel.html
./docs/design/parallel/dag.html
./docs/manual/distributed_storage.html
./docs/design/storage/index.html
http://fisco-bcos-documentation.readthedocs.io/zh_CN/release-1.3/
./docs/what_is_new.html
./docs/change_log/index.html

FISCO BCOS EN Documentation, Release v2.2.0

2 Contents

CHAPTER 1

Introduction

FISCO BCOS, officially launched in December 2017, is the first China-developed open source consortium
blockchain platform. It was collaboratively built by the FISCO open source working group, which was formed
by Beyondsoft, Huawei, Shenzhen Securities Communications, DCITS, Forms Syntron, Tencent, WeBank, YIBI
Technology, Yuexiu Financial Holdings (Fintech) and more.

1.1 Sublimation of alliance chain: Collaborative Business and
Open Consortium Chain

Business is competitive and free economic activity. It is naturally easy to result in survival of the fittest, monopoly,
and even rent-seeking. Especially after the global financial crisis in 2008, the appeared malady of “Too Big to
Fail” led to a series of technological and business revolution, and started an era of changing from centralized to
distributed.

In this context, blockchain was sprouted in 2008 and gradually became matured. Through the consensus mecha-
nism, distributed ledger, encryption algorithm, smart contract, peer-to-peer communication, distributed computing
architecture, distributed storage, privacy protection algorithm, cross-chain protocol and other technology modules,
blockchain can help the participating parties in business model to achieve the cooperation of reciprocity and mu-
tual trust so that to promote the progress from “information Internet” to “trusted Internet”, and also to make
business model moving toward “Collaborative” possible.

“Collaborative Business” model defined by WeBank is a new type of production relationship established by several
peer-to-peer commercial communities. It is a new economic activity to implement organization management,
functional division, value exchange, joint provision of products and services, and benefit share through pre-set
transparent rules. The main features of Collaborative Business are multi-participation, resources share, intelligent
collaboration, value integration, mode transparentizing, cross boundaries, etc. A mature scenario of Collaborative
Business has multiple requirements. Various parties hold production materials, build the product, and service
capabilities. The relationship in business is mutual, and the rules of product and profit-sharing are transparent.

There’re so many differences between Collaborative Business and the business models of chain and franchise store
and shared business, which are prevailing previously. The most significant one is not the person, the product, or
the information platform but the objective technology to be the bridge to connect each other. It is true that if not
to encourage open source technology, it may evolve into another kind of monopoly. Therefore, for developing
Collaborative Business, we must always maintain the attitude of open source technology. All the participants co-
operating through open source community can eliminate the monopoly. The collaborative business helps small and
micro-enterprises to achieve business value, thereby stimulating economic growth, employment and innovation,
and realizing anti-monopoly.

3

FISCO BCOS EN Documentation, Release v2.2.0

To develop open-source blockchain is significant, but the choice of technology is crucial. The first blockchain
originates from crypto-currency and permissionless blockchain projects. However, the permissionless blockchain
projects always make for financing, their users target on the profit from trading. So everyone pays more attention
to the coin price but not the blockchain application ability.

Since the tokens of the public chain are necessary class currency and class security, they have been severely
suspended by regulatory. After they are washed out, alliance chain technology has shouldered the responsibility
of pushing the blockchain technology to move forward.

In 2018, “Open Consortium Chain” was announced in the industry. They called on the consortium chain to
actively open up open source, move from the relatively closed alliance or the company to the public. The general
public can feel the benefits brought by the blockchain and realize the vision of collaborative business in that way.
The benefits include increased efficiency, cost reduction, trust enhancement, data interchange, and traceability of
responsibility.

A new generation of Open Consortium Chain proposes some unique requirements on blockchain underlying tech-
nology. Except for the standard blockchain characteristics, there is still a need to strengthen several aspects:

First, Open Consortium Chain is not a single chain, and it requires the technology to support multi-chain parallel
computing and cross-chain communication. It needs the ability to support the massive transaction request from
the Internet.

Second, it needs the ability to form alliances and build chains quickly and at low cost. So that each demand party
can efficiently establish an alliance chain network to make the cooperation of chain building among enterprises
becomes simple as building a “chat group”.

Finally, it needs to be opened to achieve full trust among alliance members.

Open Consortium Chain is not only conducive to reduce the cost on trial and error for enterprise, but also pro-
moting the development of the industrial society in the direction of credibility and transparency. Moreover, it
comprehensively reduces the risks of the operation, moral hazard, credit, information protection.

Adhere to our above goals and vision, we officially release the FISCO BCOS 2.0 version based on the “Open
Consortium Chain” technology route.

1.2 FISCO BCOS 2.0

FISCO BCOS 2.0 version has been upgraded and optimized based on the 1.0, and has made significant break-
throughs in scalability, performance, and ease for use, including:

• Implement group architecture. In a global network of multiple nodes, there may be much sub-networks
which are made up of numerous subsets of nodes to maintain a separate ledger. The consensus and storage
among these ledgers are independent of each other and have good scalability and security. In group archi-
tecture, parallel expansion can be better achieved to meet the needs of high-frequency transaction scenario
for the financial industry. Meanwhile, group architecture can quickly support the requirements of chain
building. It dramatically reduces the difficulty of operation and maintenance, and truly enables the chain
building among enterprises is as easy as building a “chat group”.

• Support Distributed Storage to enable storage to break through the limitation of a single machine and
support lateral spreading. Separating between calculation and storage can improve the system’s robustness
to prevent data from being affected even if the node server fails. Distributed storage defines a standard
interface named CRUD which can adapt to both SQL and NoSQL database system. CRUD support multiple
business scenarios.

• Implement a pre-compiled contract framework to break the EVM performance bottleneck. It supports
concurrent transaction processing to increase the transaction processing throughput greatly. Precompiled
contract is implemented in C++ and built into the underlying system. The framework can automatically
recognize a transaction’s conflict information, construct a DAG dependency, and plan an efficient parallel
transaction execution path. In the best case, the performance can increase by N times (N = CPU cores).

• Besides, FISCO BCOS 2.0 version continues to optimize network transmission models, computing stor-
age processes, and so on for significantly improving performance. Also, we continue to upgrade the core

4 Chapter 1. Introduction

FISCO BCOS EN Documentation, Release v2.2.0

modules, such as storage, network, and computing model, ensure the system’s robustness, availability, and
performance.

More 2.0 version features will be introduced in depth in the following sections. Please see [2.0 New Release] (./
what_is_new.md).

1.3 FISCO BCOS 1.0

Looking back at the evolution of FISCO BCOS, we have been working on the trade-off of performance, security,
availability, and compliance.

• In terms of performance, FISCO BCOS has made many optimizations on overall architecture and trans-
action processing. 1.0 version uses efficient consensus algorithms, parallelizing computing. Furthermore,
the core breakthrough of its performance is not only in single-chain, but also in optimizing architecture
design based on single-chain performance and achieving the flexible, efficient, reliable, and secure parallel
computing and parallel scalability capability. It can help developers to meet the performance they need
for their business scenarios by simply adding machines. In general, the FISCO BCOS platform optimizes
the network communication model, adopts the Byzantine Fault Tolerance(BFT) consensus mechanism, and
combines with the multi-chain architecture and cross-chain interaction scheme to solve the performance
problems of concurrent access and hotspot accounts so that to meet the need of high-frequency transaction
scenario for the financial industry.

• In terms of security, the FISCO BCOS platform achieves comprehensive protection in the application, stor-
age, network, and host layers through node admission control, reliable key management, and flexible access
control. In the design of privacy protection, FISCO BCOS platform supports permission management,
physical isolation, and national cryptography algorithm (standard algorithm certified by national crypto-
graphic bureau). Meanwhile, it implements multiple privacy protection algorithms including homomorphic
encryption, zero-knowledge proof, group signature, ring signature as open projects to the public.

• In terms of usability, FISCO BCOS is designed to run at 7 * 24 hours to achieve a high availability needed
for the commercial grade. In terms of regulatory, it supports regulatory, and auditing agencies can join as ob-
servation nodes to obtain real-time data for regulating and auditing. Also, it provides multiple development
interfaces to make it easier for developers to compile and call smart contract.

1.4 Summary

In practice, FISCO BCOS has grown into a stable, efficient, and secure blockchain underlying platform through
testing in many external agencies, multiple applications, and longstanding running in production environments.

The following content of this document details the tutorial of construction, installation, smart contract deployment
and calling of FISCO BCOS 2.0 version, as well as an in-depth introduction to the overall architecture of FISCO
BCOS 2.0 and the design of each module.

1.3. FISCO BCOS 1.0 5

FISCO BCOS EN Documentation, Release v2.2.0

6 Chapter 1. Introduction

CHAPTER 2

New features in 2.0 version

2.1 Group architecture

Group architecture is the main feature in FISCO BCOS 2.0, which is inspired by the group chat mode with that
everyone is familiar. The group building is very flexible, so a few persons can quickly build a topic group to
communicate. The same person can participate in multiple groups, send and receive messages in parallel. The
existing groups can continue to add members.

In a network with group architecture, depending on different service scenario, there may be multiple different
ledgers exist. The blockchain node may select a group to join according to the business relationship, and par-
ticipate in the process of data sharing and consensus of the corresponding ledgers. The characteristics of the
architecture are:

• Each group implements the consensus process independently, and the participants in the group decide how
to conduct consensus. The consensus within one group is not affected by other groups. Each group has
an independent ledger to maintain its transaction and data so that groups can be decoupling each other to
operate independently, and achieve better privacy isolation;

• The agency’s nodes need to be deployed only once and can participate in different multi-party collaboration
services through group settings. They also can divide one service into groups according to the user, time,
and other dimensions. The group architecture can expand rapidly in parallel. While expanding the scale of
business, it dramatically simplifies the complexity of the operation and reduces the management cost.

For more group introductions, please refer to Group Architecture Design Document and Group Usage Tutorial

2.2 Distributed storage

FISCO BCOS 2.0 has added support for distributed data storage, which allows nodes to store data in remote
distributed systems for overcoming the limitations of localized data storage. This program has the following
advantages:

• Support multiple storage engines, select high-availability distributed storage systems, and support data ex-
pansion easily and quickly;

• Isolating calculations and storage, so node failures can not cause data anomalies;

• Store data in a more secure quarantine area like a remote end, which makes sense in many scenarios;

7

FISCO BCOS EN Documentation, Release v2.2.0

• Distributed storage not only supports the Key-Value form but also supports the SQL method for making
business development easier;

• The storage of world state has changed from the original MPT storage structure to distributed storage for
avoiding the problem of the performance degradation caused by the rapid expansion of world state;

• Optimize the structure of the data storage for saving storage space.

Meanwhile, FISCO BCOS 2.0 is still compatible with the local storage mode in the 1.0 version. For more infor-
mation on storage, please refer to Distributed Storage Operations Manual.

2.3 Parallel computing model

In the 2.0 version, a parallel processing mechanism for contract transactions has been added to increase the con-
current throughput of contracts further.

In the 1.0 version and most of the traditional blockchain platforms, the transaction is packaged into a block
and executed serially in the transaction sequence in a block. In the 2.0 version, it implements a set of parallel
transaction processing model. Based on this model, transaction mutex variables can be customized. During the
block execution process, based on the transaction mutex variable, the system builds a transaction dependency
graph–DAG automatically, what to execute the transaction in parallel based on, increase the performance several
times (depending on the number of CPU cores).

For the introduction to more parallel computing models, please refer to the parallel transaction’s Design Document
and User Manual.

2.4 Precompiled contract

FISCO BCOS 2.0 provides a pre-compiled contract framework that supports compiling contracts in C++. It makes
contract calling faster, running faster, resources consuming fewer, and more accessible computing in parallel.
These significantly improve the efficiency of the entire system. FISCO BCOS has several built-in system-level
contracts that provide access control, such as permission management, system configuration, CRUD-style data
access. These functions are naturally integrated into the underlying platform without manual deployment.

FISCO BCOS provides standardized interfaces and examples to help users with secondary development for mak-
ing it easy to compile high-performance business contracts, and to quickly deploy them to FISCO BCOS. The
pre-compiled contract framework is compatible with the EVM engine to form a “dual-engine” architecture. The
users who are familiar with the EVM engine can select to combine Solidity contracts with pre-compiled contracts
to achieve significant efficiency while meeting business logic.

In addition, CRUD and the similar operations are also implemented by precompiled contracts. For more intro-
ductions to precompiled contracts, please refer to Precompiled Design Documentation and Precompiled Contract
Development Documentation.

2.5 CRUD contract

FISCO BCOS 2.0 has added a contractual interface specification that conforms to the CRUD interface for sim-
plifying the cost of migrating mainstream SQL-oriented business applications to the blockchain. The benefits
are:

• Similar to the traditional business development model, so it reduces the cost of contract development learn-
ing;

• Contracts only need to care about the core logic. Storage and calculation are separated to facilitate contract
upgrading;

• The underlying logic of CRUD is implemented based on pre-compiled contracts. Data storage adopts dis-
tributed storage. These make it more efficient;

8 Chapter 2. New features in 2.0 version

./manual/smart_contract.html#id2
./manual/smart_contract.html#id2

FISCO BCOS EN Documentation, Release v2.2.0

Meanwhile, the 2.0 version is still compatible with the contract in the 1.0 version. For more introduction to CRUD
interface, please refer to CRUD interface Manual.

2.6 Console

FISCO BCOS 2.0 has added console as an interactive client tool in FISCO BCOS 2.0.

The console installation is convenient and straightforward. After simple configuration, the console can communi-
cate with the chain node. The console has rich commands and good interactive experience. Users can query the
blockchain status, read and modify the configuration, manage blockchain nodes, deploy and call contract through
the console. The console helps users to manage, develop, operate, and maintain the blockchain, and to reduce the
complicated operation and the threshold of use.

Compare to traditional scripting tools such as node-js, and the console is simple to install and has a better experi-
ence. For details, please refer to Console Manual.

2.7 Virtual machine

The 2.0 version supports the latest Ethereum virtual machine version Solidity 0.5 version. At the same time, it
introduces the EVMC extension framework for supporting the expansion of different virtual machine engines.

The underlying internal integration supports interpreter virtual machines. It can be extended to support virtual
machines such as WASM/JIT in the future.

For more information on virtual machines, please refer to [Virtual Machine Design Document] (./de-
sign/virtual_machine/index.html)

2.8 Key management service

In the 2.0 version, we upgrade disk encryption and release KeyManager service for secure keys management.

The interaction protocol between the node and the KeyManager is open. It supports agency to design the Key-
Manager service that conforms to its keys management specification, such as hardware encryption technology.

For more details, please refer to Manual Document and Design Document.

2.9 Admission control

In 2.0 version, we have remodeled and upgraded the admission mechanism, including the admission of network
access and group access to securely control chain and data access in different dimensions.

We adopt new permission control system, design access permission based on a TABLE, and support CA blacklist
mechanism, which can shield the evil/failed nodes.

For details, please see Admission Mechanism Design Document

2.10 Asynchronous event

In 2.0 version, the mechanisms such as transaction on-chain asynchronous notifications, block on-chain asyn-
chronous notifications, and custom AMOP message notifications are supported together.

2.6. Console 9

./manual/smart_contract.html#crud
./design/security_control/index.html

FISCO BCOS EN Documentation, Release v2.2.0

2.11 Module remodeling

In the 2.0 version, we have remodeled and upgraded the core modules to perform modular unit testing and end-to-
end integration testing. The continuous automated integration and continuous deployment are supported.

10 Chapter 2. New features in 2.0 version

CHAPTER 3

Compatibility

FISCO BCOS 2.2.0

Change description, compatibility and upgrade instructions

• FISCO BCOS v2.2.0

FISCO BCOS 2.1.0

Change description, compatibility and upgrade instructions

• FISCO BCOS v2.1.0

FISCO BCOS 2.0.0

Change description, compatibility and upgrade instructions

• FISCO BCOS v2.0.0

FISCO BCOS 2.0.0-rc3

New features

• Distributed storage (Operation Manual)

• CRUD interface (Operation Manual)

Change description, compatibility and upgrade instructions

• FISCO BCOS v2.0.0-rc3

FISCO BCOS 2.0.0-rc2

New features

• Parallel computing model (Operation Manual) (Operation Tutorial)

11

./2_2_0.html
./2_1_0.html
./2_0_0.html
../what_is_new.html#id3
../manual/distributed_storage.html
../sdk/sdk.html#crudservice
../manual/console.html#create-sql
./2_0_0_rc3.html
../what_is_new.html#id4
../manual/transaction_parallel.html
../manual/group_use_cases.html

FISCO BCOS EN Documentation, Release v2.2.0

• Distributed storage (Operation Manual)

Change description, compatibility and upgrade instructions

• FISCO BCOS v2.0.0-rc2

FISCO BCOS 2.0.0-rc1

New features

• Group architecture (Operation Tutorial) (Design Document)

• Console (Installation) (Operation Manual)

• Virtual machine

• Compile contract (Operation Manual)

• CRUD contract (Operation Tutorial)

• Key management service (Operation Manual)

• Admission control (Operation Manual)

Change description, compatibility and upgrade instructions

• FISCO BCOS v2.0.0-rc1

FISCO BCOS 1.x Releases

FISCO BCOS 1.3 version:

• FISCO BCOS 1.3.8 Release

• FISCO BCOS 1.3.7 Release

• FISCO BCOS 1.3.6 Release

• FISCO BCOS 1.3.5 Release

• FISCO BCOS 1.3.4 Release

• FISCO BCOS 1.3.3 Release

• FISCO BCOS 1.3.2 Release

• FISCO BCOS 1.3.1 Release

• FISCO BCOS 1.3.0 Release

FISCO BCOS 1.2 version:

• FISCO BCOS 1.2.0 Release

FISCO BCOS 1.1 version:

• FISCO BCOS 1.1.0 Release

FISCO BCOS 1.0 version:

• FISCO BCOS 1.0.0 Release

FISCO BCOS preview version：：：

• FISCO BCOS 1.5.0 pre-release

View node and data versions

• View node binary version:./fisco-bcos --version

12 Chapter 3. Compatibility

../what_is_new.html#id3
../manual/distributed_storage.html
./2_0_0_rc2.html
../what_is_new.html#id2
../manual/group_use_cases.html
../design/architecture/group.html
../what_is_new.html#id6
../installation.html#id7
../manual/console.html
../what_is_new.html#id7
../what_is_new.html#id5
../manual/smart_contract.html
../what_is_new.html#crud
../tutorial/sdk_application.html
../what_is_new.html#id8
../manual/storage_security.html
../what_is_new.html#id9
../manual/node_management.html
./2_0_0_rc1.html
https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v1.3.8
https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v1.3.7
https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v1.3.6
https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v1.3.5
https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v1.3.4
https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v1.3.3
https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v1.3.2
https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v1.3.1
https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v1.3.0
https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v1.2.0
https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v1.1.0
https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v1.0.0
https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v1.5.0-pre-release

FISCO BCOS EN Documentation, Release v2.2.0

• Data format and version of communication protocol: to get it via ‘supported_version’ configuration item in
the configuration file config.ini

3.1 v2.2.0

v2.1.x upgrades to v2.2.0

• Compatible upgrade : Directly replace the binary of the v2.1.x node with v2.2.0 binary. The upgraded
version fixes bugs in v2.1.x but does not enable the new features in v2.2.0. In most cases, it is ok to rollback
to v2.1.x after upgrading to v2.2.0. See the last section for more information.

• Full upgrade : Refer to Install to build new chain and resubmit all historical transactions to the new node.
The upgraded node contains the new features in v2.2.0.

• v2.2.0 Release Note

3.1.1 Change description

New Features

• Constructing Merkel tree of transactions and receipts, which provides an spv-based method of proof

• Plug-in caching mechanism and provide caching switches

Update

Optimize the process, storage and protocol to improve performance.

1. process

• Commit RPC transactions to the transaction pool asynchronously

• Parallelize the processing of transactions in the transaction pool

• Optimize the caching strategy

• Optimize lock granularity during parallel transaction execution

• Optimize access to some objects to reduce copy costs

1. Storage

• Limit the table name length from 64 to 50

• Block data and nonce data are encoded and written to storage in binary

• Remove the sorting and hashing of partial tables when the data is submitted

1. Agreement

• Optimize the strategy of forwarding blocks

• Optimize the strategy of forwarding PBFT messages

• Optimize the structure of PBFT message

• Optimize the strategy of broadcasting transactions

• Optimize the strategy of forwarding transactions

Fix

• Fix caching bugs in specific compatibility scenarios

3.1. v2.2.0 13

../manual/configuration.html#id7
https://github.com/FISCO-BCOS/FISCO-BCOS/releases/download/v2.2.0/fisco-bcos.tar.gz
../installation.html
https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v2.2.0
https://fisco-bcos-documentation.readthedocs.io/zh_CN/latest/docs/design/merkle_proof.html
https://fisco-bcos-documentation.readthedocs.io/zh_CN/latest/docs/design/sync/sync_block_optimize.html#id1
https://fisco-bcos-documentation.readthedocs.io/zh_CN/latest/docs/design/consensus/pbft_optimize.html#id1
https://fisco-bcos-documentation.readthedocs.io/zh_CN/latest/docs/design/consensus/pbft_optimize.html#prepare
https://fisco-bcos-documentation.readthedocs.io/zh_CN/latest/docs/design/sync/sync_trans_optimize.html#id2
https://fisco-bcos-documentation.readthedocs.io/zh_CN/latest/docs/design/sync/sync_trans_optimize.html#id3

FISCO BCOS EN Documentation, Release v2.2.0

Compatibility

2.1.0 is forward compatible. Old versions can upgrade to this new version by directly replacing the binaries for
bug fixing purpose. But the new features of this version cannot be enabled unless you deploy a new chain with
only new binaries from scratch.

Rollback to v2.1.x after compatible upgrading

After compatible upgrading to v2.2.0, we can rollback by simply replacing fisco-bcos binary file to v2.1.x.

3.2 v2.1.0

v2.0.x upgrades to v2.1.0

• Compatible upgrade : Directly replace the binary of the v2.0.x node with v2.1.0 binary. The upgraded
version fixes bugs in v2.0.x but does not enable the new features in v2.1.0. In most cases, it is ok to rollback
to v2.0.x after upgrading to v2.1.0. See the last section for more information.

• Full upgrade : Refer to Install to build new chain and resubmit all historical transactions to the new node.
The upgraded node contains the new features in v2.1.0.

• v2.1.0 Release Note

3.2.1 Change description

New Features

• CA whitelist

• AMOP authentication

• Event log pushing

• Start new groups without restarting the node

Update

• Support Channel Message v2 protocol

• Support to configure node address with domain names

• Increase max contract binary size limit to 256KB

• Output more detailed log for transaction exceptions

• Rename SDK certificate file names generated by build_chain.sh to sdk.crt and sdk.key

• Adjust some code structure for better performance

• Decrease memory footprint

Fix

• Minor channel connection bugs

Compatibility

2.1.0 is forward compatible. Old versions can upgrade to this new version by directly replacing the binaries for
bug fixing purpose. But the new features of this version cannot be enabled unless you deploy a new chain with
only new binaries from scratch.

Rollback to v2.0.x after compatible upgrading

After compatible upgrading to v2.1.0, we can rollback by simply replacing fisco-bcos binary file to v2.0.x.
If a large contract(binary size between 24K and 256K) is deployed after upgrading, rollback to v2.0.x may lead

14 Chapter 3. Compatibility

https://github.com/FISCO-BCOS/FISCO-BCOS/releases/download/v2.1.0/fisco-bcos.tar.gz
../installation.html
https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v2.1.0
../sdk/java_sdk.html#id14
../enterprise_tools/tutorial_one_click.html#id22
../design/protocol_description.html#channelmessage-v2
../manual/configuration.html#p2p

FISCO BCOS EN Documentation, Release v2.2.0

to block downloading error. In this case, we need to use v2.1.0 fisco-bcos to download blocks until newest
block before rolling back.

3.3 v2.0.0

v2.0.0-rc3 upgrades to v2.0.0

• Compatible upgrade : Directly replace the binary of the v2.0.0-rc3 node with v2.0.0 binary. The upgraded
version fixes bugs in v2.0.0-rc3 but does not enable the new features in v2.0.0. after upgrading to v2.0.0,
cannot roll back to v2.0.0-rc3

• Full upgrade : Refer to Install to build new chain and resubmit all historical transactions to the new node.
The upgraded node contains the new features in v2.0.0.

• v2.0.0 Release Note

3.3.1 Change description

New features

• AMOP Protocol supports Multicast

• AMOP protocol supports binary transmission

• Statistics of New Historic Failure Transactions in JSON-RPC ‘getTotal Transaction Count’Interface

Update

• RocksDB Mode supports storage security

• Use TCMalloc to optimize memory usage

Fix

• Fix the problem that the P2P module occasionally does not process messages

• Fix unassigned fields in MySQL or External mode, query failed

• Fix synchronization errors in some extreme scenarios

Compatibility

2.0.0 is forward compatible. Old versions can directly replace program upgrades, but new features of this version
cannot be started. If you need to use the new features of this version, you need to build a new chain.

3.4 v2.0.0-rc3

v2.0.0-rc2 upgrades to v2.0.0-rc3

• Compatible upgrade : Directly replace the binary of the v2.0.0-rc2 node with rc3 binary. The upgraded
version fixes bugs in v2.0.0-rc2 but does not enable the new features in v2.0.0-rc3. after upgrading to
v2.0.0-rc3, cannot roll back to v2.0.0-rc2

• Full upgrade : Refer to Install to build new chain and resubmit all historical transactions to the new node.
The upgraded node contains the new features in v2.0.0-rc3.

• v2.0.0-rc3 Release Note

3.3. v2.0.0 15

https://github.com/FISCO-BCOS/FISCO-BCOS/releases/download/v2.0.0/fisco-bcos.tar.gz
../installation.html
https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v2.0.0
https://github.com/FISCO-BCOS/FISCO-BCOS/releases/download/v2.0.0-rc3/fisco-bcos.tar.gz
../installation.html
https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v2.0.0-rc3

FISCO BCOS EN Documentation, Release v2.2.0

3.4.1 Change description

New features

• Distributed storage: [The new support for underlying connecting to MySQL directly through database con-
nection pool] (../manual/distributed_storage.html#id2)

• Distributed storage: [The new support for RocksDB engine, which to be used for storage by default when
building new chain] (../manual/configuration.html#id14)

• Distributed storage: The new support for CRUD interface. The console in 1.0.3 version or above provides
class SQL statements to read and write blockchain data

Updates

• complete the ABI decoding module

• modify the error codes in precompiled contract and RPC interface and unify them to negative number

• optimize the storage module; increase the cache layer and support to configure cache size

• optimize the storage module; allow to submit block in pipelining. You can configure [storage] .
max_capacity to control the memory size that is allowed

• move the distributed storage configuration item [storage] from the group genesis file to the group ini
configuration file

• the default storage is upgraded to RocksDB and still supports the old version of LevelDB

• adjust the splicing logic of transaction mutex variables to improve the degree of parallelism of the transac-
tions between different contracts

Fix

• fix the abnormal termination that may occur when CRUD interface contract opens parallel

3.4.2 Compatibility note

RC3 Forward Compatibility. The older versions can directly upgrade by replacing program, but they cannot
launch the new features for this release. If you need to use the new features, you need to build chain again.

3.5 v2.0.0-rc2

v2.0.0-rc1 upgrade to v2.0.0-rc2

• Compatible upgrade : Directly replace the binary of the v2.0.0-rc1 node with rc2 binary <https://github.
com/FISCO-BCOS/FISCO-BCOS/releases/download/v2.0.0-rc2/fisco-bcos.tar.gz>‘_ . The upgraded ver-
sion fixes bugs in v2.0.0-rc1 but does not enable the new features such as parallel computing, distributed
storage, etc. in v2.0.0-rc2. after upgrading to v2.0.0-rc2, cannot roll back to v2.0.0-rc1

• Full upgrade : Refer to Install <../installation.html>‘_ to build new chain and resubmit all historical trans-
actions to the new node. The upgraded node contains the new features in v2.0.0-rc2.

• v2.0.0-rc2 Release Note

3.5.1 Change description

New features

• Parallel computing model: Parallel contract development framework, Parallel Transaction Executor (PTE)

• Distributed storage: amdb-proxy, SQLStorage

16 Chapter 3. Compatibility

../manual/console.html#create-sql
../manual/console.html#create-sql
https://github.com/FISCO-BCOS/FISCO-BCOS/releases/download/v2.0.0-rc2/fisco-bcos.tar.gz
https://github.com/FISCO-BCOS/FISCO-BCOS/releases/download/v2.0.0-rc2/fisco-bcos.tar.gz
https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v2.0.0-rc2

FISCO BCOS EN Documentation, Release v2.2.0

Optimization

• optimize the logic of block packing transaction number, and dynamically adjust the number of block packing
transactions according to the execution time.

• optimize the process of block synchronization to make block synchronization faster

• optimize the codec of the upcoming transaction, the verification of the transaction and the coding of disk in
parallel

• optimize the logic of transaction executing return code to make return code more accurate

• upgrade storage modules to support concurrent reading and writing

Other features

• add network data packet compression

• add compatibility configuration

• add chainID and group ID to the transaction code

• add binary cache in transaction

• add timestamp information in gensis block

• add some precompile demos

• support using Docker to build chain

• delete unnecessary logs

• delete unnecessary and repeat operations

Bug fix

• the bug of program exiting caused by asInt abnormity when processing parameters in RPC

• the bug in which the transaction has not been processed in pool when the transaction executing ‘Out of gas’

• the bug that can be replayed with the same transaction binary between different groups

• the problems of performance degradation caused by ‘insert’ operation

• some stability problems have been fixed

3.5.2 Compatibility note

3.6 v2.0.0-rc1

v1.x upgrades to v2.0.0-rc1

• v2.0.0-rc2 is not compatible with v1.x so v2.0.0-rc1 cannot directly parse the historical block data
generated by v1.x, but the old data can be recovered by performing historical transaction on the new chain
at v2.0.0-rc1

• build 2.0’s new chain : Refer to install

• v2.0.0-rc1 Release Note

3.6.1 Change description

Architecture

1. Add group architecture: each group has independent consensus and storage. System throughput can be
lateral spreading based on lower operation cost.

3.6. v2.0.0-rc1 17

../manual/configuration.html#id15
../manual/configuration.html#id7%3E
https://github.com/FISCO-BCOS/FISCO-BCOS/releases/download/v2.0.0-rc1/fisco-bcos.tar.gz
../installation.html
https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v2.0.0-rc1

FISCO BCOS EN Documentation, Release v2.2.0

2. Add distributed data storage: supports nodes storing data in remote distributed systems to achieve computing
and data isolation, high-speed capacity expansion, and data security level enhancement.

3. Add support for precompiled contracts: the underlying implements pre-compiled contract framework based
on C++, is compatible with the solidity calling method, and improves the performance of smart contract
execution.

4. Introducing evmc extension framework: support for extending different virtual machine engines.

5. Upgrade remodeling P2P, consensus, sync, Transaction execution, transaction pool, block management
module.

Protocol

1. Implement a set of CRUD basic data access interface specification contract. To compile business contracts
based on CRUD interface to implement traditional SQL oriented business development process.

2. Support mechanisms such as transaction asynchronous notification, block putting on chain asynchronous
notification, and custom AMOP message notification.

3. Upgrade Ethereum virtual machine version and support Solidity 0.5.2 version.

4. Upgrade RPC module.

Security

1. UpgradeDisk encryption and provide private key management service. When the disk encryption function
is enabled, to manage paivate key depands on KeyManager service.

2. UpgradeAdmission mechanism. Through introducing the network access mechanism and the group access
mechanism, to control the access of chain and data in different dimensions.

3. UpgradeAuthority control system. Design access permission based on table

Others

1. Provide an entry-level building chain tool.

2. Provide modular unit testing and end-to-end integration testing and support automated continuous integra-
tion and continuous deployment.

3.6.2 Compatibility note

Compatible version

18 Chapter 3. Compatibility

CHAPTER 4

Installation

This chapter will introduce the required installations and configurations of FISCO BCOS. For better understand-
ing, we will illustrate an example of deploying a 4-node consortium chain in a local machine using FISCO BCOS.
Please use the supported hardware and platform operations according to here.

4.1 To build a single-group consortium chain

This section takes the construction of single group FISCO BCOS chain as an example to operate. We use the
build_chain.sh script to build a 4-node FISCO BCOS chain locally in Ubuntu 16.04 64bit system.

Note:

• To update an existing chain, please refer to compatibility chapter.

• It is similar to build a multi-group chain, interested can be referred to here .

• This section uses pre-compiled static fisco-bcos binaries which tested on CentOS 7 and Ubuntu 16.04 64bit.

4.1.1 Prepare environment

• Install dependence

build_chain.sh script depends on openssl, curl and is installed by using the following instructions.
For CentOS system, to replaces apt with yum in the following command. For macOS system, to executes brew
install openssl curl.

sudo apt install -y openssl curl

• Create operation directory

cd ~ && mkdir -p fisco && cd fisco

• Download build_chain.sh script

curl -LO https://github.com/FISCO-BCOS/FISCO-BCOS/releases/download/v2.2.0/build_
→˓chain.sh && chmod u+x build_chain.sh

19

change_log/index.html
manual/group_use_cases.html

FISCO BCOS EN Documentation, Release v2.2.0

4.1.2 Build a single-group 4-node consortium chain

Execute the following command in the fisco directory to generate a single group 4-node FISCO chain. It is
necessary to ensure that the 30300~30303, 20200~20203, 8545~8548 ports of the machine are not
occupied.

bash build_chain.sh -l "127.0.0.1:4" -p 30300,20200,8545

Note:

• The -p option specifies the starting ports, which are p2p_port, channel_port, jsonrpc_port. For security
reasons, jsonrpc/channel listens to 127.0.0.1 by defaults. If you require to access external network, please
add -i parameter.

If the command is executed successfully, All completed will be output. If the execution fails, please check
the error message in the nodes/build.log file.

Checking fisco-bcos binary...
Binary check passed.
==
Generating CA key...
==
Generating keys ...
Processing IP:127.0.0.1 Total:4 Agency:agency Groups:1
==
Generating configurations...
Processing IP:127.0.0.1 Total:4 Agency:agency Groups:1
==
[INFO] Execute the download_console.sh script to get FISCO-BCOS console, download_
→˓console.sh is in directory named by IP.
bash download_console.sh

==
[INFO] FISCO-BCOS Path : bin/fisco-bcos
[INFO] Start Port : 30300 20200 8545
[INFO] Server IP : 127.0.0.1:4
[INFO] State Type : storage
[INFO] RPC listen IP : 127.0.0.1
[INFO] Output Dir : /home/ubuntu16/fisco/nodes
[INFO] CA Key Path : /home/ubuntu16/fisco/nodes/cert/ca.key
==
[INFO] All completed. Files in /home/ubuntu16/fisco/nodes

4.1.3 Start FISCO BCOS chain

• Execute the following command to start all nodes

bash nodes/127.0.0.1/start_all.sh

Success will output a response similar to the following, otherwise, please use netstat -an | grep tcp to
check whether the machine’s 30300~30303, 20200~20203, 8545~8548 ports are occupied.

try to start node0
try to start node1
try to start node2
try to start node3
node1 start successfully
node2 start successfully
node0 start successfully
node3 start successfully

20 Chapter 4. Installation

FISCO BCOS EN Documentation, Release v2.2.0

4.1.4 Check process

• Execute the following command to check whether the process is started

ps -ef | grep -v grep | grep fisco-bcos

In normal situation, the output will be similar to the following. If the number of processes is not 4, then the reason
why the process does not start is that the port is occupied.

fisco 5453 1 1 17:11 pts/0 00:00:02 /home/fisco/fisco/nodes/127.0.0.
→˓1/node0/../fisco-bcos -c config.ini
fisco 5459 1 1 17:11 pts/0 00:00:02 /home/fisco/fisco/nodes/127.0.0.
→˓1/node1/../fisco-bcos -c config.ini
fisco 5464 1 1 17:11 pts/0 00:00:02 /home/fisco/fisco/nodes/127.0.0.
→˓1/node2/../fisco-bcos -c config.ini
fisco 5476 1 1 17:11 pts/0 00:00:02 /home/fisco/fisco/nodes/127.0.0.
→˓1/node3/../fisco-bcos -c config.ini

4.1.5 Check log output

• Execute the following command to view the number of nodes that node0 links to

tail -f nodes/127.0.0.1/node0/log/log* | grep connected

In normal situation, the connecting messages will be output continuously. From the output messages, we can see
that node0 has links with the other three nodes.

info|2019-01-21 17:30:58.316769| [P2P][Service] heartBeat connected count,size=3
info|2019-01-21 17:31:08.316922| [P2P][Service] heartBeat connected count,size=3
info|2019-01-21 17:31:18.317105| [P2P][Service] heartBeat connected count,size=3

• Execute the following command to check whether it is in consensus

tail -f nodes/127.0.0.1/node0/log/log* | grep +++

In normal situation, the message will be output ++++Generating seal continuously to indicate that the
consensus is normal.

info|2019-01-21 17:23:32.576197|
→˓[g:1][p:264][CONSENSUS][SEALER]++++++++++++++++Generating seal on,blkNum=1,tx=0,
→˓myIdx=2,hash=13dcd2da...
info|2019-01-21 17:23:36.592280|
→˓[g:1][p:264][CONSENSUS][SEALER]++++++++++++++++Generating seal on,blkNum=1,tx=0,
→˓myIdx=2,hash=31d21ab7...
info|2019-01-21 17:23:40.612241|
→˓[g:1][p:264][CONSENSUS][SEALER]++++++++++++++++Generating seal on,blkNum=1,tx=0,
→˓myIdx=2,hash=49d0e830...

4.2 Using console

Console links nodes of FISCO BCOS through Web3SDK so as to realize functions like blockchain status query,
call and deploy contracts. The instructions of console are introduced here.

4.2.1 Prepare environment

• Install Java

4.2. Using console 21

FISCO BCOS EN Documentation, Release v2.2.0

In macOS, execute brew cask install java to install java

sudo apt install -y default-jdk

• Get console

cd ~/fisco && bash nodes/127.0.0.1/download_console.sh

• Copy the console configuration file. If the node does not use the default port, please replace 20200 in the
file with another port.

cp -n console/conf/applicationContext-sample.xml console/conf/applicationContext.
→˓xml

• Configure the console certificate

cp nodes/127.0.0.1/sdk/* console/conf/

Important:

• if the console has been configured correctly, but it reports the following exception when starting console in
CentOS system:

Failed to connect to the node. Please check the node status and the console configuration.

this is caused by the in-built JDK version of CentOS system(who will lead to verification failure of
console and nodes). Please download and install Java 8 or above version from OpenJDK official
website or Oracle official website (for detailed installation steps please check Additional), and start
console after finishing installation.

4.2.2 Start console

• Start console

cd ~/fisco/console && bash start.sh

If it outputs following information, then the console has been started successfully, otherwise please check if the
node ports in conf/applicationContext.xml are configured correctly.

===
Welcome to FISCO BCOS console(1.0.3)！
Type 'help' or 'h' for help. Type 'quit' or 'q' to quit console.
________ ______ ______ ______ ______ _______ ______ ______
→˓ ______
| \| \ / \ / \ / \ | \ / \ /
→˓\ / \
| $$$$$$$$ \$$$$$$| $$$$$$\| $$$$$$\| $$$$$$\ | $$$$$$$\| $$$$$$\| $$$$$
→˓$\| $$$$$$\
| $$__ | $$ | $$___\$$| $$ \$$| $$ | $$ | $$__/ $$| $$ \$$| $$ | $
→˓$| $$___\$$
| $$ \ | $$ \$$ \ | $$ | $$ | $$ | $$ $$| $$ | $$ | $
→˓$ \$$ \
| $$$$$ | $$ _\$$$$$$\| $$ __ | $$ | $$ | $$$$$$$\| $$ __ | $$ | $
→˓$ _\$$$$$$\
| $$ _| $$_ | __| $$| $$__/ \| $$__/ $$ | $$__/ $$| $$__/ \| $$__/ $
→˓$| __| $$
| $$ | $$ \ \$$ $$ \$$ $$ \$$ $$ | $$ $$ \$$ $$ \$$ $
→˓$ \$$ $$
\$$ \$$$$$$ \$$$$$$ \$$$$$$ \$$$$$$ \$$$$$$$ \$$$$$$ \$$$$$
→˓$ \$$$$$$

(continues on next page)

22 Chapter 4. Installation

https://jdk.java.net/java-se-ri/8
https://jdk.java.net/java-se-ri/8
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
manual/console.html#java

FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

===

4.2.3 Query blockchain status

acquire client ends version information
[group:1]> getNodeVersion
{

"Build Time":"20190121 06:21:05",
"Build Type":"Linux/clang/Debug",
"FISCO-BCOS Version":"2.0.0",
"Git Branch":"master",
"Git Commit Hash":"c213e033328631b1b8c2ee936059d7126fd98d1a"

}
acquire node connection information
[group:1]> getPeers
[

{
"IPAndPort":"127.0.0.1:49948",
"NodeID":

→˓"b5872eff0569903d71330ab7bc85c5a8be03e80b70746ec33cafe27cc4f6f8a71f8c84fd8af9d7912cb5ba068901fe4131ef69b74cc773cdfb318ab11968e41f
→˓",

"Topic":[]
},
{

"IPAndPort":"127.0.0.1:49940",
"NodeID":

→˓"912126291183b673c537153cf19bf5512d5355d8edea7864496c257630d01103d89ae26d17740daebdd20cbc645c9a96d23c9fd4c31d16bccf1037313f74bb1d
→˓",

"Topic":[]
},
{

"IPAndPort":"127.0.0.1:49932",
"NodeID":

→˓"db75ab16ed7afa966447c403ca2587853237b0d9f942ba6fa551dc67ed6822d88da01a1e4da9b51aedafb8c64e9d208d9d3e271f8421f4813dcbc96a07d6a603
→˓",

"Topic":[]
}

]

4.3 To deploy or call HelloWorld contract

4.3.1 HelloWorld contract

HelloWorld contract offers 2 interfaces which are get() and set() and are used to acquire/set contract variety
name. The contract content is as below:

pragma solidity ^0.4.24;

contract HelloWorld {
string name;

function HelloWorld() {
name = "Hello, World!";

}

(continues on next page)

4.3. To deploy or call HelloWorld contract 23

FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

function get()constant returns(string) {
return name;

}

function set(string n) {
name = n;

}
}

4.3.2 Deploy HelloWorld contract

For quick experience, the console comes with HelloWorld contract and is placed under console folder
contracts/solidity/HelloWorld.sol. So, users only have to deploy it using the following command.

input the following instruction in console, if it is deployed successfully, the
→˓contract address will be returned
[group:1]> deploy HelloWorld
contract address:0xb3c223fc0bf6646959f254ac4e4a7e355b50a344

4.3.3 Call HelloWorld contract

check the current block number
[group:1]> getBlockNumber
1

call get interface to acquire name variety, the contract address here is the
→˓returned address of deploy instruction
[group:1]> call HelloWorld 0xb3c223fc0bf6646959f254ac4e4a7e355b50a344 get
Hello, World!

check the current block number, it remains the same, because get interface will
→˓not change the ledger status
[group:1]> getBlockNumber
1

call set to set name
[group:1]> call HelloWorld 0xb3c223fc0bf6646959f254ac4e4a7e355b50a344 set "Hello,
→˓FISCO BCOS"
0x21dca087cb3e44f44f9b882071ec6ecfcb500361cad36a52d39900ea359d0895

check the current block number again, if it increased, then it has generated
→˓block and the ledger status is changed
[group:1]> getBlockNumber
2

call get interface to acquire name variety, check if the setting is valid
[group:1]> call HelloWorld 0xb3c223fc0bf6646959f254ac4e4a7e355b50a344 get
Hello, FISCO BCOS

log out console
[group:1]> quit

Note: To deploy contract can also specify the contract version number of the deployment through the
deployByCNS command, using method reference here. To call contract via the callByCNS command, us-
ing the method reference here.

24 Chapter 4. Installation

manual/console.html#deploybycns
manual/console.html#callbycns

CHAPTER 5

Tutorials

This chapter will introduce the basic process and related core concept for quick development of DApp on FISCO
BCOS. We will also provide company users a toolkit tutorial for easier development and deployment.

5.1 Core concept (Revision in progress)

Blockchain is intricated with multiple technical approaches. This chapter will illustrate the basic concept of
blockchain and knowledges about some relative theories. You can skip this chapter if you are familiar with these
techniques.

5.1.1 What is blockchain

Blockchain is a concept proposed after bitcoin. In Satoshi Nakamoto’s Paper about bitcoin, he didn’t mention
about blockchain but described the data structure as “chain of block”.

Chain of block is an organization type of data, a chain-like structure connected by hashes of blocks. Blockchain
refers to a comprehensive technology intricated with many techniques to maintain and manage the chain of block
and form an immutable distributed ledger.

Blockchain technology is adapted to build an unforgeable, immutable and traceable block-chain data structure in
an equal networking environment through transparent and trustable rules, a way to realize and manage trusted
data generation, in & out and usage. As of the technical structure, blockchain is an all-rounded solution formed
by multiple information technologies including distributed structure and storage, block-chain data structure, p2p
networking, consensus algorithm, cryptography algorithm, game theory and smart contract.

Blockchain technology and eco-system is originated from bitcoin. Today, serious look has been taken on this
technology by broad industries like finance, justice, supply chain, entertainment, social administration, IoT, etc.
They want to put its great technical value into extensive distributed cooperation. Meanwhile, progress has also
been seen in the blockchain technology and product model. FISCO BCOS blockchain platform concentrates on
capabilities of improving security, performance, usability, friendly operation, privacy protection, compliance and
regulation based on blockchain technology. It grows together with the community eco-system to better present
functions like multi-participation, smart cooperation, professional division of labor, and value sharing.

25

https://bitcoin.org/bitcoin.pdf

FISCO BCOS EN Documentation, Release v2.2.0

Ledger

Ledger, as its name suggests, is used for managing data of accounts or transaction records and supports func-
tions like distributed ledger, reconciliation and settlement, etc.. In multi-lateral cooperation, partners want to co-
maintain or share a real-time, correct and safe distributed ledger to eliminate inequality of message and improve
efficiency and ensure funds and business security. And blockchain are often regarded as a core technology for
building up distributed sharing ledger, contributed by joint efforts of technologies like block-chain data structure,
multi-party consensus mechanism, smart contract, global state storage, which can realize a consistent, trustable,
safe and immutable traceable sharing ledger. Ledger contains contents like block number, transactions, accounts
and global state.

Block

Block is a data structure built in chronological order. The first block of blockchain is called Genesis Block, and
the latter blocks are identified with block number. Each block number increases one by one. New block will take
the hash of the former block and generate a unique data print by hash algorithm and local block data, so that a
coherent block-chain structure, namely blockchain, is formulated. This delicate data structure design makes it
possible that data on chain saved in order and is traceable and verifiable. If any of the data is changed, it will cost
extremely high because of being stuck in verification of all chain.

The basic data structure of a block is block header and block body. Block header contains block height, hash,
generator’s signature, state root. Block body contains the returning message of a transaction data list. The size of
block will be different according to the size of the transaction list, and it won’t be too large considering network
transmission, up to between 1M to 10M byte.

Transaction

Transaction can be seen as a request data targeting blockchain system to deploy contract, call contract interface,
maintain life cycle of contract and manage assets, conduct value exchange, etc.. The basic data structure of
transaction includes sender, receiver and transaction data. User can create a transaction and sign it with its private
key, then send on chain (through interface like sendRawTransaction). And it will be consensus by several nodes,
executes smart contract code, generates the status data assigned with the transaction and packs it into block and
saves with status data. Now the transaction is confirmed and gets its duty and consistency.

As the transaction is confirmed, a receipt will be created and saved in the block correspondently for storage of
execution information like result code, log and gas consumption. User can use hash of the transaction to check
its receipt to know whether it is finished. Equivalent with “write” transaction, there is a “read-only” method of
invocation for reading data on chain.

It shares the similar request method with transaction but invokes functions by call() (not sendRawTransaction()).
When the node receives “read-only” invocation request, it will return with the requested accessed parameter status
without inviting the request into consensus process to avoid modification of data on chain.

Account

In the blockchain system designed in account model, account represents the uniqueness of user and smart contract.

In the blockchain system adapting private-public key, user creates a public and private key pair and calculates a
unique address string by hash or other algorithms to be the account of this user. User uses private key to manage
assets in this account. Sometimes there might not be storage space for user account, so smart contract will manage
user’s data instead, this account is called “exterior account”.

As of smart contract, when one smart contract is deployed, it has an only address on chain, which is also called
contract account that pointing at the index for status bit, binary code, related status data, etc.. During operation of
smart contract, it will load binary code through this address and visit data in global state storage by the index of
status data. Then, according to the operation result, it will write the data into global state storage and update status
data index in the contract account. To deactivate smart contract, user only has to change its status bit into invalid,
and the real data of the contract account won’t be cleared out usually.

26 Chapter 5. Tutorials

FISCO BCOS EN Documentation, Release v2.2.0

Global state

FISCO BCOS uses account model design, which contains another storage space for smart contract operation result
besides space for blocks and transactions. The status data generated during smart contract execution is confirmed
by consensus mechanism and saved distributedly on each node to ensure global consistency, verifiability and
immutability. And therefore, it’s called “global” status.

Because of status storage space, blockchain is able to save various kinds of data, including user account informa-
tion like balance, etc., smart contract binary code and operation result or other related data. During execution,
smart contract will acquire some data from status storage for calculation, laying the foundation for complex con-
tract logic realization.

On the other hand, status data maintenance costs high in storage, as the chain keeps operating, status data will
keep inflating, like adapting the complex data structure Patricia Tree results in expansion of capacity. Therefore,
status data can be cut or optimized in some cases, or use storage solution like distributed data warehouse for more
extensive data capacity.

Consensus mechanism

Consensus mechanism is the core concept of blockchain, as there will not be blockchain if without consensus.
Blockchain is a distributed system where nodes cooperate to calculate and witness the execution of transactions
and confirm the final result. It brings these loosely-coupled untrusted participants together to be trusted partners,
and keeps the cooperation being consistent and lasting, which can be abstracted as the process of “consensus”,
and the related algorithms and strategies are called consensus mechanism.

Node

A computer installed with software and hardware concerning blockchain system and join the blockchain network
can be called a “node”. Nodes take part in network communication, logic calculation, data verification and storage
of block, transaction and status, etc., and provide client ends interfaces for transaction process and data inquiry.
The identification of node adapts public-private key mechanism, which generates a string of unique Node ID to
ensure its uniqueness on blockchain.

According to the involvement of calculation and storage of data, nodes can be categorized into consensus node
and observation node. Consensus node fully participates in consensus process, packing block as accountant and
verifying block as verifier. Observation node doesn’t join consensus process but synchronize data for verification
and storage as a data service provider.

Consensus algorithm

Consensus algorithm needs to handle several core problems:

1. pick out a role as with ledger right within the system, and start ledgering as a leader.

2. Participator adapts undeniable and immutable algorithm, verifies in multi-levels and takes the ledger from
leader.

3. Data synchronization and distributed cooperation can make sure that all participants receive the same and
correct result.

Common algorithm of blockchain includes Proof of Work, Proof of Stake and Delegated Proof of Stake that
are often used in public chain, and Practical Byzantine Fault Tolerance (PBFT), RAFT that are often used in
consortium chain. Besides, some advanced consensus algorithms often organically combine the above mentioned
algorithms with random number generator to improve security, energy consumption and performance, size or other
issues.

FISCO BCOS consensus module is designed pluggable and supports many consensus algorithms, including PBFT
and RAFT currently, to realize broader and faster consensus algorithms.

5.1. Core concept (Revision in progress) 27

FISCO BCOS EN Documentation, Release v2.2.0

Smart contract

Smart contract, first proposed by Nick Szabo in 1995, is a contract defined in numeric term and can execute
clauses automatically. Numeric term means that contract has to be realized by computer codes, for as long as
the agreement is reached among participants, the right and responsibility established by smart contract will be
executed automatically and its result is undeniable.

FISCO BCOS applies smart contract in not only asset management, rules definition and value exchange, but also
overall configuration, maintenance, governance and authority setting, etc.

Life cycle of smart contract

The life cycle of smart contract contains steps of design, development, test, deployment, operation, upgrade and
deactivation.

Developers edit, compile and unit-test the codes of smart contract, the development language can be solidity, C++,
java, go, javascript, rust, etc.. The choice of language depends on the type of virtual machine. After passing test,
the contract will be published on chain using deployment command and confirmed by consensus algorithm.

The contract will be called by transaction afterwards after validated. When contract needs upgrade, user has to
repeat the above mentioned steps from development to deployment so as to release new contract version, which
will own a new address and independent storage space instead of covering the old one. The new contract can
access the data in the old contract through the interface, or migrate the old contract data into its own storage. The
best practice is of the “behavior contract” for designing execution process and “data contract” for storing data. It
decouples data and contract, so when there is change in process but not data, the new behavior contract can access
the existed data contract.

Revoking an old contract doesn’t mean clearing all of its data, but only setting its status to “invalid” so that this
contract can’t be called any more.

Smart contract virtual machine

To run digital smart contract, blockchain system needs compiler and actuator that are capable of compilation,
analysis and code execution, which is called virtual machine system. After the contract is edited and complied
by the compiler, user sends deployment transaction to deploy it on blockchain system. Once the transaction has
passed consensus process, the system will allocate a binary code with a unique address to reserve contract. When
a contract is called by another transaction, virtual machine actuator loads code from contract storage and executes
to output execution result.

In a blockchain system which emphasizes security, transactional routines and consistency, the virtual machine
should possess sandbox features to block uncertain factors, like random number, system time, exterior file system
and network, as well as invasion of malicious code to make sure consistent execution result and safe process of
one transaction and one contract on different nodes.

Currently popular virtual machines includes EVM, controlled Docker, WebAssembly, etc.. The virtual machine
model of FISCO BCOS adapts modularization design and supports broadly-used EVM. More kinds of adaptable
virtual machines can be expected in the future.

Turing complete

Turing machine or Turing complete is a classical concept in computing field. It is an abstract computing model
proposed by mathematician Alan Mathison Turing (1912-1954) and is stretched into blockchain field, referring
to a model where contract supports logical computing like judgement, jump, cycle and recursion, process ability
of multiple data types like integer, byte string and structure, and even has object-oriented features like inheri-
tance, derivation and interface. This will make it possible for complex transactional logics and complete contract
execution, which is distinct from simple script that only supports operand stack.

Most blockchain systems appearing after 2014 support Turing complete smart contract to make them highly com-
pilable. On top of some basic features of blockchain (like multi-party consensus, immutability, traceability and

28 Chapter 5. Tutorials

FISCO BCOS EN Documentation, Release v2.2.0

security), they can realize contract with transactional logics, such as The Ricardian Contract, and smart contract
is also adaptable.

The execution of contract needs to process the Halting problem, namely to judge whether the program can solve
the input problem within limited time and terminate execution to release resource. Now imagine that a contract is
deployed in the whole network, when being called it will also be executed on every node. And if the contract is an
infinite cycle, then there is possibility to use up all the system resources. So, the addressing of Halting problem is
an important issue of Turing complete computing system in blockchain.

5.1.2 Consortium blockchain

Usually blockchain is divided into 3 types: public blockchain, consortium blockchain and private blockchain.
Public blockchain can be joined by anybody at any time, even anonymously. Private blockchain is owned by an
entity (an agency or a nature person) and is managed and used in private way. Consortium blockchain is usually
formed by multiple entities who made an agreement on certain protocols, or built a business alliance. Whoever
wants to join consortium blockchain needs verification, often with knowable identity. For there is access control,
consortium blockchain is also called “permissioned blockchain”.

Consortium blockchain has access control and identity management in most sections from creation, member
joining to operation and transaction. Operations on chain can be monitored by permission setting. Consensus
mechanism like PBFT based on multi-party multi-round verification voting is adopted here, instead of energy-
consuming POW mining mechanism. Therefore, its network scale is relatively controllable and can be massively
optimized in aspects like transaction delay, transactional consistency and certainty, concurrency and capacity.

Consortium blockchain has inherited the advantages of blockchain and is more adaptable for some difficult busi-
ness cases which requires high performance capacity, regulation and compliance, like finance, justice or others
that related to entity economy. The way consortium blockchain possesses is suitable both for business compliance
and stability and for innovation, which is also been encouraged by the country and the industry.

Performance

Performance indicator

The most popular performance indicator for software system is TPS (Transaction Per Second), the transaction
volume that the system could process and confirm per second. The higher the TPS, the better the performance.
Besides TPS, the performance indicators for blockchain also include Delay ACK and the network scale, etc..

Delay ACK is the total time used from transaction arriving on blockchain to final confirmation after a series of
process including verification, calculation and consensus. For example, each block on bitcoin network costs 10
minutes. And transaction will be processed mostly by 6 blocks, that is 1 hour. In PBFT algorithm, transaction can
be confirmed in seconds with final certainty, which caters to the need of finance transactions.

The network scale refers to the number of co-working consensus nodes the system supports on the premise of
assured TPS and Delay ACK. It’s believed usually by insiders that the node scale is around hundred level if using
PBFT consensus algorithm in a system, and increment of the node scale will result in decrease of TPS and increase
of Delay ACK. The consensus mechanism where the accounting group is chosen by random number algorithm
can fix the problem.

Performance optimization

The is two options of performance optimization: scale up and scale out. scale up is to optimize the configurations
of software and hardware on the basis of limited resources to lift up processing ability, like using more efficient
algorithm or hardware acceleration, etc.. Scale out means good extendibility of system structure. It uses Sharding
and Partition to carry out various users and transaction flows. As long as adding software and hardware resources
appropriately, it can load more requests.

5.1. Core concept (Revision in progress) 29

FISCO BCOS EN Documentation, Release v2.2.0

Performance indicators, software structure, hardware configuration like CPU, internal memories, storage scale
and internet bandwidth, are all closely related. And following the increment of TPS, there will be more pressure
for storage capacity, which needs to be considered comprehensively.

Security

Security is a big topic, especially for blockchain system that built on distributed network with multi-party engage-
ment. In system level, problems like internet attack, system penetration, data corruption or leakage should be
concerned. In transaction level, we should consider about unauthorized operation, logic errors, asset impairment
caused by system stability and privacy invasion.

To ensure security we need to focus on “the shortest board of buckets” and prepare with comprehensive security
strategy providing all-rounded protection that meets high security standard. With best practices in security and
equal security for all participants, this will make sure the security within overall network.

Access mechanism

Access mechanism refers to the processes for either agencies or persons who want to build or join the blockchain,
like multi-party verification of the subject to make sure it has knowable identity, trustable quality and reliable
technology before starting the creation work of consortium blockchain, so the verified node will be added into
blockchain and allocated with public and private keys that can send transactions. After the access process is done,
information of the agency, node or staff will be registered on blockchain or reliable information services, where
every operation can be traced down to each agency and person.

Permission control

Permission control on consortium blockchain means controls on data read-and-write in various sensitivity levels
by different staff. It contains permissions in contract deployment, data access in contract, block data syncing,
system parameters access and change, node start-stop, etc.. There can be more permission controls according to
different transactional needs.

Permissions are allocated to roles if using Role-Based Access Control model design. One example for reference is
to divide roles into operation manager, transaction operator, application developer, O&M manager, administrator.
And each role can be further subdivided to meet other needs. The complete model could be very huge and
complicated, so it should be designed properly to adapt to transactional needs as well as security concerns.

Privacy protection

Business cooperation based on blockchain structure requires all parties to output and share data for calculation
and verification. In complicated business context, agencies want better control on their data. And there is also a
growing need for personal data privacy protection. Therefore, how to protect the private part of shared data and
prevent from privacy leakage during operation becomes an important problem.

Administration is the first area to address privacy protection. When the system starts running, it should keep the
principle of “minimum authorized and express consent”, complete life-cycle management of data collection, stor-
age, application, disclosure, deletion and recovery, and establish daily management and emergency management
system. For those business transactions with high sensitivity, there should be a regulation role for checking and
auditing from a third party so that all sections can be supervised.

Technically, data masking, transaction separation or system physical isolation or other ways can control the scope
of data distribution. Meanwhile, cryptographic methods like Zero-knowledge Proof, Secure Multi-Party Compu-
tation, Ring Signature, Group Signature and Blind Signature can protect data through strong encryption.

30 Chapter 5. Tutorials

FISCO BCOS EN Documentation, Release v2.2.0

Physical isolation

Physical isolation is a radical method to avoid privacy data leakage. In this way, only the participants who share
data can communicate in the network layer, others will not be able to communicate or exchange even one byte of
data.

There is another method called logic isolation in which participants can receive other data but with access limits
or encryption, so unauthorized participants or those with no keys have no right of access and change. However,
with the technological development, data that are limited in access or encrypted may be decoded in the future.

For data with extremely high sensitivity, it’s good to use physical isolation strategy to eradicate possibility of
being cracked. But meanwhile, it will cost more in detailed screening of data’s sensitivity level and need thorough
planning and enough hardware resources to load different data.

Governance and regulation

Governance of consortium blockchain

Governance of consortium involves coordination, incentive mechanism, safe operation and regulation audit of
multiple participants. The core is to sort out the responsibility and right, work flow of each party to build up a
smooth development and O&M system, guarantee compliance and create precaution and emergency management
for security issues. Rules need to be stipulated to make sure every participant reaches agreement and conducts
thorough execution to accomplish governance.

A typical reference model for consortium blockchain is that all participants co-found a consortium blockchain
committee for joint discussion and decision making, design roles and tasks according to transaction needs, for
instance, some agencies work on development and some join operation management, and every agency takes
part in transactions and O&M with smart contract managing rules and maintaining system data. The committee
and regulator can be given with right of permission control, verifying and setting permissions for transactions,
agencies and staff. When it comes to emergency, they can carry out emergency operations like resetting accounts
and adjusting transactions through agreed rules in smart contract. When the system needs to be upgraded, the
committee will take the responsibility of coordinating each party.

On a consortium blockchain with complete governance mechanism, there will be peer-to-peer cooperation of all
participants, including asset transactions and data exchanging, which improves operation efficiency greatly and
business innovation as well as guarantees the compliance and security.

Fast deployment

The general steps to build a blockchain system include: acquire hardware resources including server, internet,
memories, hard disk, etc.; configure the environment by choosing an operation system, opening a network port
and making strategies, bandwidth planning and storage space allocation, etc.; acquire binary executable soft-
ware or compile it from the source code; configure the blockchain system, including genesis block configuration,
parameter configuration and log configuration; configure multi-party interconnection, including node access con-
figuration, port discovery, consensus participants list, etc.; configure client ends and developer tools, including the
console and SDK, etc.. There are so many complicated and repetitive steps, like the management of certificates
and public and private keys, which form a high entry barrier.

Therefore, to simplify and quicken the process of building blockchain with low error rate and cost, these need to be
considered: First, standardize the target deployment platform and prepare in advance the operation system, reliable
software list, network bandwidth, network strategy and other key software and hardware, match the version with
parameters to make the platform available and ready for use. Currently there are cloud services or docker that can
help building standardized platform.

Then, take the user experience into consideration by optimizing the formation, configuration and networking of
blockchain software and offering toolkit for fast and automatic networking, so users will not be tangled with
miscellaneous details but can start operating blockchain with few steps.

5.1. Core concept (Revision in progress) 31

FISCO BCOS EN Documentation, Release v2.2.0

FISCO BCOS emphasizes the deployment experience for users and offers command-line for one-click deployment
to help developers expedite development and debugging environment building. It provides networking tool of
business level for flexible parameters configuration of the host and network, manages relative certificates for
easier cooperation among companies when they co-network on blockchain. By optimized deployment method, it
shortens the time of building blockchain into a few minutes or within half an hour.

Data governance

Blockchain requires data to be verified in each layer and leaves traceable records. Usually, the solution is to
save all the data on all nodes (except lightweight nodes), resulting in data inflation and capacity intensity. It is
especially obvious with cases that bear massive services. After some time, regular storage solution has limited
data capacity, and it costs high to adopt mass storage. Besides, security should also be concerned. The permanent
storage of all data may face risk of data leakage. Therefore, it is important to better the design of data governance.

Some strategies of data governance are concluded here: cutting and transfer, parallel expansion and distributed
storage. It depends on specific cases to determine which one is suitable.

For data with strong temporal features, like in a case that account clearing happens one time a week, then the data
before the week will not be calculated or verified again. The old data can be transferred from node to big data
storage to meet the need of data traceability and verifiability and long storage life for transactions. When there is
lower data pressure for nodes and history data is kept off-line, more attention can be put on security strategies.

When it comes to snowballing transaction cases, like when users and contract copies increase tremendously, it can
allocate each of them to different logic partitions, each of which owns independent storage space and bears certain
quantity of data. When data is near capacity limit, it will arrange more resources to store new data. Partition
design makes it easier to do resources allocation and cost management.

Combining the strategies of data cutting and transfer with parallel expansion, the cost of data capacity and security
of data can get better controlled, and it also benefits the execution of massive transactions.

O&M monitoring

Blockchain system presents high consistency in its foundation and operation logic. Different nodes often share the
same software and hardware system. Its standardized features bring convenience for operation and maintenance
staff. They can use the commonly-used tools, O&M strategy and workflow or others to build, deploy, configure
blockchain system and handle faults to realize low O&M cost and high efficiency.

O&M staff has limited authority to operate in consortium blockchain. They have permission to modify system
configuration, process start-stop, check operation log and detect troubles, but they are not involved in transactions
and cannot check user data or transaction data that rates high in privacy security.

During the operation of system, they can monitor all the operational indicators and evaluate the health of system
status through monitoring system. It will send warning messages when there appear faults, so the staff can response
and handle them immediately.

The monitoring system covers status of fundamental environment, like CPU occupation rate, system memories
rate and incremental, IO status of disk, internet connection quantity and traffic, etc..

The monitoring of blockchain system includes block number, transaction volume and virtual machine computa-
tion, and voting and block generation of consensus nodes, etc..

The monitoring of interface includes counting, time consumed, and success rate of API callings.

The monitoring data can be output from log or network interface for agencies to connect with the existing moni-
toring systems so the monitoring ability and O&M workflows can be multiplexed. When the O&M staff receive
the warning message, they can use the O&M tool offered by consortium blockchain to view system information,
modify configuration, start-stop process and handle faults, etc..

32 Chapter 5. Tutorials

FISCO BCOS EN Documentation, Release v2.2.0

Regulation audit

With the development of blockchain technology and business exploration, the blockchain platform needs a func-
tion to support regulation to prevent it from being against regulation rules and laws, or becoming the carrier for
money washing, illegal financing and criminal transactions.

The audit function is mainly designed to meet the needs of audit and internal control, responsibility confirmation
and event tracing of blockchain system. It should be combined with effective techniques to do accurate audit
management according to the specific industrial standards.

Regulators can join the blockchain system as nodes, or interact with blockchain system through interfaces. They
can synchronize all the data for audit analysis and trace overall transaction flows. And if they detect exceptions,
they can send instruction with regulation authority. Also, they can monitor transactions, participants and accounts
to realize “penetrative regulation”.

FISCO BCOS supports regulation audit in aspects like roles and access control design, function interface and audit
tool.

5.2 Build the first blockchain application

This chapter will introduce a whole process of business application scenario development based on FISCO BCOS
blockchain. The introduce includes business scenario analysis, contract design implementation, contract com-
pilation, and blockchain development. Finally, we introduce an application module implementation which is to
implement calling access to the contract on blockchain through the Web3SDK we provide.

This tutorial requires user to be familiar with the Linux operating environment, has the basic skills of Java devel-
opment, is able to use the Gradle tool, and is familiar with Solidity syntax.

Through the tutorial, you will learn the following:

1. How to express the logic of a business scenario in the form of a contract

2. How to convert Solidity contract into Java class

3. How to configure Web3SDK

4. How to build an application and integrate Web3SDK into application engineering

5. How to call the contract interface through Web3SDK, and to understand its principle

The full project source code for the sample is provided in the tutorial and users can quickly develop their own
applications based on it.

Important: Please refer to Installation documentation to complete the construction of the FISCO BCOS
blockchain and the download of the console. The operation in this tutorial is assumed to be carried out in the
environment of the documentation building.

5.2.1 Sample application requirements

Blockchain is naturally tamper-proof and traceable. These characteristics make it more attractive to the financial
sector. This article will provide an easy example of asset management development and ultimately achieve the
following functions:

• Ability to register assets on blockchain

• Ability to transfer funds from different accounts

• Ability to check the amount of assets in the account

5.2. Build the first blockchain application 33

https://solidity.readthedocs.io/en/latest/
../installation.html

FISCO BCOS EN Documentation, Release v2.2.0

5.2.2 Contract design and implementation

When developing an application on blockchain, for combining with business requirements, it is first necessary to
design the corresponding smart contract to determine the storage data that contract needs, and on this basis, to
determine the interface provided by the smart contract. Finally, to specifically implement each interface.

Storage design

FISCO BCOS provides a contract CRUD interface development model, which can create table through contracts,
and add, delete, and modify the created table. For this application, we need to design a table t_asset for storage
asset management. The table’s fields are as follows:

• account: primary key, asset account (string type)

• asset_value: asset amount (uint256 type)

account is the primary key, which is the field that needs to be passed when the t_asset table is operated. The
blockchain queries the matching records in the table according to the primary key field. The example of t_asset
table is as follow:

Interface design

According to the design goals of the business, it is necessary to implement asset registration, transfer, and query
functions. The interfaces of the corresponding functions are as follows:

// query the amount of assets
function select(string account) public constant returns(int256, uint256)
// asset registration
function register(string account, uint256 amount) public returns(int256)
// asset transfer
function transfer(string from_asset_account, string to_asset_account, uint256
→˓amount) public returns(int256)

Full source

pragma solidity ^0.4.24;

import "./Table.sol";

contract Asset {
// event
event RegisterEvent(int256 ret, string account, uint256 asset_value);
event TransferEvent(int256 ret, string from_account, string to_account,

→˓uint256 amount);

constructor() public {
// create a t_asset table in the constructor
createTable();

}

function createTable() private {
TableFactory tf = TableFactory(0x1001);
// asset management table, key : account, field : asset_value
// | account(primary key) | amount |
// |-------------------- |-------------------|
// | account | asset_value |
// |---------------------|-------------------|
//
// create table

(continues on next page)

34 Chapter 5. Tutorials

../manual/smart_contract.html#crud

FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

tf.createTable("t_asset", "account", "asset_value");
}

function openTable() private returns(Table) {
TableFactory tf = TableFactory(0x1001);
Table table = tf.openTable("t_asset");
return table;

}

/*
description: query asset amount according to asset account

parameter:
account: asset account

return value：
parameter1： successfully returns 0, the account does not exist and

→˓returns -1
parameter2： valid when the first parameter is 0, the amount of assets

*/
function select(string account) public constant returns(int256, uint256) {

// open table
Table table = openTable();
// query
Entries entries = table.select(account, table.newCondition());
uint256 asset_value = 0;
if (0 == uint256(entries.size())) {

return (-1, asset_value);
} else {

Entry entry = entries.get(0);
return (0, uint256(entry.getInt("asset_value")));

}
}

/*
description : asset registration
parameter ：

account : asset account
amount : asset amount

return value：
0 regist successfully
-1 asset account already exists
-2 other error

*/
function register(string account, uint256 asset_value) public returns(int256){

int256 ret_code = 0;
int256 ret= 0;
uint256 temp_asset_value = 0;
// to query whather the account exists
(ret, temp_asset_value) = select(account);
if(ret != 0) {

Table table = openTable();

Entry entry = table.newEntry();
entry.set("account", account);
entry.set("asset_value", int256(asset_value));
// insert
int count = table.insert(account, entry);
if (count == 1) {

// true
ret_code = 0;

(continues on next page)

5.2. Build the first blockchain application 35

FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

} else {
// false. no permission or other error
ret_code = -2;

}
} else {

// account already exists
ret_code = -1;

}

emit RegisterEvent(ret_code, account, asset_value);

return ret_code;
}

/*
description : asset transfer
parameter ：

from_account : transferred asset account
to_account ：received asset account
amount ： transferred amount

return value：
0 transfer asset successfully
-1 transfe asset account does not exist
-2 receive asset account does not exist
-3 amount is insufficient
-4 amount is excessive
-5 other error

*/
function transfer(string from_account, string to_account, uint256 amount)

→˓public returns(int256) {
// query transferred asset account information
int ret_code = 0;
int256 ret = 0;
uint256 from_asset_value = 0;
uint256 to_asset_value = 0;

// whather transferred asset account exists?
(ret, from_asset_value) = select(from_account);
if(ret != 0) {

ret_code = -1;
// not exist
emit TransferEvent(ret_code, from_account, to_account, amount);
return ret_code;

}

// whather received asset account exists?
(ret, to_asset_value) = select(to_account);
if(ret != 0) {

ret_code = -2;
// not exist
emit TransferEvent(ret_code, from_account, to_account, amount);
return ret_code;

}

if(from_asset_value < amount) {
ret_code = -3;
// amount of transferred asset account is insufficient
emit TransferEvent(ret_code, from_account, to_account, amount);
return ret_code;

}

(continues on next page)

36 Chapter 5. Tutorials

FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

if (to_asset_value + amount < to_asset_value) {
ret_code = -4;
// amount of received asset account is excessive
emit TransferEvent(ret_code, from_account, to_account, amount);
return ret_code;

}

Table table = openTable();

Entry entry0 = table.newEntry();
entry0.set("account", from_account);
entry0.set("asset_value", int256(from_asset_value - amount));
// update transferred account
int count = table.update(from_account, entry0, table.newCondition());
if(count != 1) {

ret_code = -5;
// false? no permission or other error?
emit TransferEvent(ret_code, from_account, to_account, amount);
return ret_code;

}

Entry entry1 = table.newEntry();
entry1.set("account", to_account);
entry1.set("asset_value", int256(to_asset_value + amount));
// update received account
table.update(to_account, entry1, table.newCondition());

emit TransferEvent(ret_code, from_account, to_account, amount);

return ret_code;
}

}

Note: The implementation of the Asset.sol contract requires to introduce a system contract interface file
Table.sol provided by FISCO BCOS. The system contract file’s interface is implemented by the underlying
FISCO BCOS. When a business contract needs to operate CRUD interface, it is necessary to introduce the interface
contract file. Table.sol contract detailed interface reference here.

5.2.3 Contract compiling

In the previous section, we designed the storage and interface of the contract Asset.sol according to business
requirements, and implemented them completely. However, Java program cannot directly call Solidity contract.
The Solidity contract file needs to be compiled into a Java file first.

The console provides a compilation tool that stores the Asset.sol contract file in the console/contract/
solidity directory. Compile with the sol2java.sh script provided in the console directory, as follows:

switch to the fisco/console/ directory
$ cd ~/fisco/console/
compile the contract, specify a Java package name parameter later, you can
→˓specify the package name according to the actual project path.
$./sol2java.sh org.fisco.bcos.asset.contract

After successful operation, the java, abi, and bin directories will be generated in the console/contracts/
sdk directory as shown below.

|-- abi # The generated abi directory, which stores the abi file generated by
→˓Solidity contract compilation.
| |-- Asset.abi

(continues on next page)

5.2. Build the first blockchain application 37

../manual/smart_contract.html#crud

FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

| |-- Table.abi
|-- bin # The generated bin directory, which stores the bin file generated by
→˓Solidity contract compilation.
| |-- Asset.bin
| |-- Table.bin
|-- contracts # The source code file that stores Solidity contract. Copy the
→˓contract that needs to be compiled to this directory.
| |-- Asset.sol # A copied Asset.sol contract, depends on Table.sol
| |-- Table.sol # System CRUD contract interface file provided by default
|-- java # Storing compiled package path and Java contract file
| |-- org
| |--fisco
| |--bcos
| |--asset
| |--contract
| |--Asset.java # Java file generated by the Asset.
→˓sol contract
| |--Table.java # Java file generated by the Table.
→˓sol contract
|-- sol2java.sh

The org/fisco/bcos/asset/contract/ package path directory is generated in the java directory. The
directory contains two files Asset.java and Table.java, where Asset.java is the file required by the
Java application to call the Asset.sol contract.

Asset.java’s main interface:

package org.fisco.bcos.asset.contract;

public class Asset extends Contract {
// Asset.sol contract transfer interface generation
public RemoteCall<TransactionReceipt> transfer(String from_account, String to_

→˓account, BigInteger amount);
// Asset.sol contract register interface generation
public RemoteCall<TransactionReceipt> register(String account, BigInteger

→˓asset_value);
// Asset.sol contract select interface generation
public RemoteCall<Tuple2<BigInteger, BigInteger>> select(String account);

// Load the Asset contract address, to generate Asset object
public static Asset load(String contractAddress, Web3j web3j, Credentials

→˓credentials, ContractGasProvider contractGasProvider);

// Deploy Assert.sol contract, to generate Asset object
public static RemoteCall<Asset> deploy(Web3j web3j, Credentials credentials,

→˓ContractGasProvider contractGasProvider);
}

The load and deploy functions are used to construct the Asset object, and the other interfaces are used to call the
interface of the corresponding solidity contract. The detailed use will be introduced below.

5.2.4 SDK configuration

We provide a Java engineering project for development. First, get the Java engineering project:

get the Java project project archive
$ cd ~
$ curl -LO https://github.com/FISCO-BCOS/LargeFiles/raw/master/tools/asset-app.

→˓tar.gz
extract the Java project project asset-app directory

(continues on next page)

38 Chapter 5. Tutorials

FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

$ tar -zxf asset-app.tar.gz

The directory structure of the asset-app project is as follows:

|-- build.gradle // gradle configuration file
|-- gradle
| |-- wrapper
| |-- gradle-wrapper.jar // related code implementation for downloading
→˓Gradle
| |-- gradle-wrapper.properties // Configuration information used by the
→˓wrapper, such as the version of gradle
|-- gradlew // shell script for executing wrapper commands under Linux or Unix
|-- gradlew.bat // batch script for executing wrapper commands under Windows
|-- src
| |-- main
| | |-- java
| | |-- org
| | |-- fisco
| | |-- bcos
| | |-- asset
| | |-- client // the client calling class
| | |-- AssetClient.java
| | |-- contract // the Java contract class
| | |-- Asset.java
| |-- test
| |-- resources // resource files
| |-- applicationContext.xml // project configuration file
| |-- contract.properties // file that stores the deployment contract
→˓address
| |-- log4j.properties // log configuration file
| |-- contract // Solidity contract files
| |-- Asset.sol
| |-- Table.sol
|
|-- tool

|-- asset_run.sh // project running script

Project introduced Web3SDK

The project’s build.gradle file has been introduced to Web3SDK and no need to be modified. The
introduction method is as follows:

• Web3SDK introduces Ethereum’s solidity compiler-related jar package, so you need to add Ethereum’s
remote repository to the build.gradle file:

repositories {
maven {

url "http：//maven.aliyun.com/nexus/content/groups/public/"
}
maven { url "https：//dl.bintray.com/ethereum/maven/" }
mavenCentral()

}

• introduce the Web3SDK jar package

compile ('org.fisco-bcos：web3sdk：2.1.0')

5.2. Build the first blockchain application 39

FISCO BCOS EN Documentation, Release v2.2.0

Certificate and configuration file

• Blockchain node certificate configuration

Copy the SDK certificate corresponding to the blockchain node

go to the ~ directory
copy the node certificate to the project's resource directory
$ cd ~
$ cp fisco/nodes/127.0.0.1/sdk/* asset-app/src/test/resources/

• applicationContext.xml

Note:

If the rpc_listen_ip set in the chain is 127.0.0.1 or 0.0.0.0 and the channel_port is 20200, the
applicationContext.xml configuration does not need to be modified. If the configuration of blockchain
node is changed, you need to modify applicationContext.xml. For details, please refer to SDK Usage
Document.

5.2.5 Business development

We’ve covered how to introduce and configure the Web3SDK in your own project. This section describes how to
invoke a contract through a Java program, as well as an example asset management note. The asset-app project
already contains the full source code of the sample, which users can use directly. Now introduces the design and
implementation of the core class AssetClient.

AssetClient.java: The deployment and invocation of the contract is implemented by calling Asset.java,
The path /src/main/java/org/fisco/bcos/asset/client, the initialization and the calling process
are all in this class.

• initialization

The main function of the initialization code is to construct the Web3j and Credentials’ objects, which are needed to
be used when creating the corresponding contract class object (calling the contract class’s deploy or load function).

// Initialize in function initialize
ApplicationContext context = new ClassPathXmlApplicationContext(
→˓"classpath:applicationContext.xml");
Service service = context.getBean(Service.class);
service.run();

ChannelEthereumService channelEthereumService = new ChannelEthereumService();
channelEthereumService.setChannelService(service);
// initialize the Web3j object
Web3j web3j = Web3j.build(channelEthereumService, 1);
// initialize the Credentials object
Credentials credentials = Credentials.create(Keys.createEcKeyPair());

• construct contract class object

Contract objects can be initialized using the deploy or load functions, which are used in different scenarios. The
former applies to the initial deployment contract, and the latter is used when the contract has been deployed and
the contract address is known.

// deploy contract
Asset asset = Asset.deploy(web3j, credentials, new StaticGasProvider(gasPrice,
→˓gasLimit)).send();
// load contract address
Asset asset = Asset.load(contractAddress, web3j, credentials, new
→˓StaticGasProvider(gasPrice, gasLimit));

• interface calling

40 Chapter 5. Tutorials

../sdk/sdk.html#spring
../sdk/sdk.html#spring

FISCO BCOS EN Documentation, Release v2.2.0

Use the contract object to call the corresponding interface and handle the returned result.

// select interface calling
Tuple2<BigInteger, BigInteger> result = asset.select(assetAccount).send();
// register interface calling
TransactionReceipt receipt = asset.register(assetAccount, amount).send();
// transfer interface
TransactionReceipt receipt = asset.transfer(fromAssetAccount, toAssetAccount,
→˓amount).send();

5.2.6 Running

So far we have introduced all the processes of the asset management application using the blockchain and imple-
mented the functions. Then we can run the project and test whether the function is normal.

• compilation

switch to project directory
$ cd ~/asset-app
compile project
$./gradlew build

After the compilation is successful, the dist directory will be generated under the project root directory. There
is an asset_run.sh script in the dist directory to simplify project operation. Now let’s start by verifying the
requirements set out in this article.

• deploy the Asset.sol contract

enter dist directory
$ cd dist
$ bash asset_run.sh deploy
Deploy Asset successfully, contract address is
→˓0xd09ad04220e40bb8666e885730c8c460091a4775

• register asset

$ bash asset_run.sh register Alice 100000
Register account successfully => account: Alice, value: 100000
$ bash asset_run.sh register Bob 100000
Register account successfully => account: Bob, value: 100000

• query asset

$ bash asset_run.sh query Alice
account Alice, value 100000
$ bash asset_run.sh query Bob
account Bob, value 100000

• transfer asset

$ bash asset_run.sh transfer Alice Bob 50000
Transfer successfully => from_account: Alice, to_account: Bob, amount: 50000
$ bash asset_run.sh query Alice
account Alice, value 50000
$ bash asset_run.sh query Bob
account Bob, value 150000

Summary: So far, we have built an application based on the FISCO BCOS Alliance blockchain through contract
development, contract compilation, SDK configuration and business development.

5.2. Build the first blockchain application 41

FISCO BCOS EN Documentation, Release v2.2.0

42 Chapter 5. Tutorials

CHAPTER 6

Manual (Revision in progress)

This chapter provides an operation tutorial of FISCO BCOS platform to introduce its functions and operation
methods.

6.1 Getting Executables

Users can choose any of the following methods to get FISCO BCOS executable. It is recommended to download
the precompiled binaries from GitHub.

• The official statically linked precompiled files can be used on Ubuntu 16.04 and CentOS 7.2 version or later.

• docker image is provided officially, welcome to use. docker-hub address

• You can compile from the source code, visit here source code compilation.

6.1.1 Downloading precompiled fisco-bcos

The statically linked precompiled executable provided has been tested on Ubuntu 16.04 and CentOS 7. Please
download the latest released pre-compiled executable from the Release.

6.1.2 docker image

From v2.0.0 version, we provide the docker image for the tag version. Corresponding to the master branch, we
provide image of latest tag. For more docker tags please refer tohere.

build_chain.sh script adds the -d option to provide docker mode building for developers to deploy. For details,
please refer to here.

Note: For using build_chain.sh script easily, we start docker by using --network=host network mode. Users
may need to customize and modify according to their own network scenarios when they actually use.

43

https://hub.docker.com/r/fiscoorg/fiscobcos
https://github.com/FISCO-BCOS/FISCO-BCOS/releases
https://hub.docker.com/r/fiscoorg/fiscobcos/tags
build_chain.html#id4

FISCO BCOS EN Documentation, Release v2.2.0

6.1.3 Source code compilation

Note: The source code compilation is suitable for the experienced developers. You are required to download
all library dependencies during compilation. Network connection would required and would take 5-20 minutes in
total.

FISCO BCOS is using generic CMake to generate platform-specific build files, which means the steps are similar
for most operating systems:

1. Install build tools and dependent package (depends on platform).

2. Clone code from FISCO BCOS.

3. Run cmake to generate the build file and compile.

Installation dependencies

• Ubuntu

Ubuntu 16.04 or later is recommended. The versions below 16.04 have not been tested. You will require to have
the build tools build tools and libssl for compiling the source code.

$ sudo apt install -y g++ libssl-dev openssl cmake git build-essential autoconf
→˓texinfo

• CentOS

CentOS7 version or later is recommended.

$ sudo yum install -y epel-release
$ sudo yum install -y openssl-devel openssl cmake3 gcc-c++ git

• macOS

xcode10 version and above are recommended. macOS dependent package installation depends on Homebrew.

$ brew install openssl git

Code clone

$ git clone https://github.com/FISCO-BCOS/FISCO-BCOS.git

Compile

After compilation, binary files are located at FISCO-BCOS/build/bin/fisco-bcos.

$ cd FISCO-BCOS
$ git checkout master
$ mkdir -p build && cd build
please use cmake3 for CentOS
$ cmake ..
#To add -j4 to accelerate compilation by 4 compilation processes
$ make

44 Chapter 6. Manual (Revision in progress)

https://cmake.org
https://github.com/FISCO-BCOS/FISCO-BCOS
https://brew.sh/

FISCO BCOS EN Documentation, Release v2.2.0

Compile options

• BUILD_GM，off by default, national cryptography compilation flag. To enable it, use cmake
-DBUILD_GM=on ..

• TESTS, off by default, unit test compilation flag. To enable it, use cmake -DTESTS=on ..

• DEMO，off by default, test program compilation switch. To open it through cmake -DDEMO=on ...

• BUILD_STATIC，off by default, static compilation switch, only supports Ubuntu. To open it through
cmake -DBUILD_STATIC=on ...

• Generate source documentation.

Install Doxygen
$ sudo apt install -y doxygen graphviz
Generate source documentation locate at build/doc
$ make doc

6.2 Hardware requirements

Note: Since multiple nodes share network bandwidth, CPU, and memory resources, it is not recommended to
configure too much nodes on one machine in order to ensure the stability of service.

The following table is a recommended configuration for single-group and single-node. Node consumes resources
in a linear relationship with the number of groups. You can configure the number of nodes reasonably according
to actual business requirement and machine resource.

6.3 Supported Platforms

• CentOS 7.2+

• Ubuntu 16.04

• macOS 10.14+

6.4 Chain building script

Important: The goal of the script is to let users apply FISCO BCOS as quickly as possible. For the enterprise
applications deploying FISCO BCOS, please refer to Enterprise Deployment Tools .

FISCO BCOS has provided build_chain script to help users quickly build FISCO BCOS alliance chain.
By default, the script downloads master branch of the latest version pre-compiles executable program from
GitHubfor building related environment.

6.4.1 Script introduction

• build_chain.sh is used to quickly generate configuration files of a chain node. For the script that
depends on openssl, please according your own operating system to install openssl 1.0.2 version
and above. The source code of script is located at FISCO-BCOS/tools/build_chain.sh.

6.2. Hardware requirements 45

../enterprise_tools/index.html
https://github.com/FISCO-BCOS/FISCO-BCOS
https://github.com/FISCO-BCOS/FISCO-BCOS/blob/master/tools/build_chain.sh

FISCO BCOS EN Documentation, Release v2.2.0

• For quick experience can use the -l option to specify the node IP and number. -f option supports the
creation of FISCO BCOS chains for complex business scenarios by using a configuration file in a specified
format. -l and -f options must be specified uniquely and cannot coexist.

• It is recommended to use -T and -i options for testing. -T enables log level to DEBUG. -i sets RPC and
channel to listen for 0.0.0.0 while p2p module listens for 0.0.0.0 by default.

6.4.2 Help

Usage:
-l <IP list> [Required] "ip1:nodeNum1,ip2:nodeNum2" e.g:

→˓"192.168.0.1:2,192.168.0.2:3"
-f <IP list file> [Optional] split by line, every line

→˓should be "ip:nodeNum agencyName groupList". eg "127.0.0.1:4 agency1 1,2"
-e <FISCO-BCOS binary path> Default download fisco-bcos from GitHub.

→˓If set -e, use the binary at the specified location
-o <Output Dir> Default ./nodes/
-p <Start Port> Default 30300,20200,8545 means p2p_port

→˓start from 30300, channel_port from 20200, jsonrpc_port from 8545
-i <Host ip> Default 127.0.0.1. If set -i, listen 0.0.0.

→˓0
-v <FISCO-BCOS binary version> Default get version from https://github.

→˓com/FISCO-BCOS/FISCO-BCOS/releases. If set, use specified version binary
-s <DB type> Default rocksdb. Options can be rocksdb /

→˓mysql / external, rocksdb is recommended
-d <docker mode> Default off. If set -d, build with docker
-c <Consensus Algorithm> Default PBFT. If set -c, use Raft
-C <Chain id> Default 1. Can set uint.
-g <Generate guomi nodes> Default no
-z <Generate tar packet> Default no
-t <Cert config file> Default auto generate
-T <Enable debug log> Default off. If set -T, enable debug log
-F <Disable log auto flush> Default on. If set -F, disable log auto

→˓flush
-h Help

e.g
./tools/build_chain.sh -l "127.0.0.1:4"

6.4.3 Option introduction

loption:

Use to specify the chain to be generated and the number of nodes under each IP, separated by commas. The script
generates configuration file of corresponding node according to the input parameters. The port number of each
node is incremented from 30300 by default. All nodes belong to the same organization and Group.

foption

+ Use to generate node according to configuration file. It supports more
→˓customization than `l` option.
+ Split by row. Each row represents a server, in the format of `IP:NUM AgencyName
→˓GroupList`. Items in each line are separated by spaces, and there must be **no
→˓blank lines**.
+ `IP:NUM` represents the IP address of the machine and the number of nodes on the
→˓machine.`AgencyName`represents the name of the institution to specifies the
→˓institution certificate to use. `GroupList` represents the group that the
→˓generated node belong to, split by`,`. For example, `192.168.0.1:2 agency1 1,2`
→˓represents that a machine with `ip` which is `192.168.0.1` exists two nodes. For
→˓example, 192.168.0.1:2 agency1 1,2 represents that there are two nodes on the
→˓machine with ip 192.168.0.1. These two nodes belong to agency `agency1` and
→˓belong to group1 and group2.

(continues on next page)

46 Chapter 6. Manual (Revision in progress)

FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

The following is an example of a configuration file. Each configuration item separated by a space, where
GroupList represents the group that the server belongs to.

192.168.0.1:2 agency1 1,2
192.168.0.1:2 agency1 1,3
192.168.0.2:3 agency2 1
192.168.0.3:5 agency3 2,3
192.168.0.4:2 agency2 3

Suppose the above file is named ipconf, using the following command to build a chain, which indicates to use
configuration file, to set the log level to DEBUG, and to listen for 0.0.0.0.

$ bash build_chain.sh -f ipconf -T -i

eoption[Optional]

is used to specify full path where fisco-bcos binary is located.Script will cope fisco-bcos to the directory
named by IP number. If no path to be specified, the latest binary program of master branch is downloaded from
GitHub by default.

download the latest release binary from GitHub to generate native 4 nodes
$ bash build_chain.sh -l "127.0.0.1:4"
use bin/fisco-bcos binary to generate native 4 nodes
$ bash build_chain.sh -l "127.0.0.1:4" -e bin/fisco-bcos

ooption[Optional]

specifies the directory where the generated configuration is located.

poption[Optional]

specifies the starting port of the node. Each node occupies three ports which are p2p, channel, and jsonrpc,
respectively. The ports are split by, and three ports must be specified. The ports used by different nodes under the
same IP address are incremented from the starting port.

Two nodes occupies `30300,20200,8545` and `30301,20201,8546` respectively.
$ bash build_chain -l 127.0.0.1:2 -p 30300,20200,8545

ioption[Optional]

No parameter option. When setting this option, set the node’s RPC and channel to listen to 0.0.0.0.

voption[Optional]

Used to specify the binary version used when building FISCO BCOS. build_chain downloads the latest
version of [Release Page] (https://github.com/FISCO-BCOS/FISCO-BCOS/releases) by default. When set-
ting this option, the download parameter specifies the version version and sets [compatibility].
supported_version=${version} in the configuration file config.ini. If you specify the binary with
the -e option, to use the binary and configure [compatibility].supported_version=${version}
as the latest version number of [Release page](https://github.com/FISCO-BCOS/FISCO-BCOS /releases).

6.4. Chain building script 47

FISCO BCOS EN Documentation, Release v2.2.0

doption[Optional]

Use the docker mode to build FISCO BCOS. When using this option, the binary is no longer extracted, but users
are required to start the node machine to install docker, and their accounts have docker permission, which means
their accounts should in the docker group. Use following command to start node at node home.

$./start.sh

The command to start the node in script start.sh is as follows

$ docker run -d --rm --name ${nodePath} -v ${nodePath}:/data --network=host -w=/
→˓data fiscoorg/fiscobcos:latest -c config.ini

soption[Optional]

There are parameter options. The parameter is the name of db. Currently it supports three modes: rocksdb, mysql,
external and scalable. RocksDB is used by default.

• rocksdb use RocksDB as backend database.

• mysql needs to configure the information relates to mysql in the group ini file.

• external needs to configure topic information and start amdb-proxy.

• scalable mode, block data and state data are stored in different RocksDB databases, and block data is
stored in rocksdb instance named after block height. The rocksdb instance used to store block data is scroll
according to the configuration scroll_threshold_multiple*1000 and block height. If chain data
need to be tailored, the scalable mode must be used.

coption[Optional]

No parameter option. When setting this option, the consensus algorithm for setting the node is Raft, and the
default setting is PBFT.

Coption[Optional]

Used to specify the chain identifier when building FISCO BCOS. When this option is set, using parameter to set
[chain].id in the configuration file config.ini. The parameter range is a positive integer and the default
setting is 1.

The chain is identified as 2
$ bash build_chain.sh -l 127.0.0.1:2 -C 2

goption[Optional]

No parameter option. When setting this option, to build the national cryptography version of FISCO BCOS. The
binary fisco-bcos is required to be national cryptography version when using the g option.

zoption[Optional]

No parameter option. When setting this option, the tar package of node is generated.

toption[Optional]

This option is used to specify the certificate configuration file when certificate is generated.

48 Chapter 6. Manual (Revision in progress)

FISCO BCOS EN Documentation, Release v2.2.0

Toption[Optional]

No parameter option. When setting this option, set the log level of node to DEBUG. The related configuration of
log reference here.

6.4.4 Node file organization

• cert folder stores root certificate and organization certificate of the chain.

• The folder named by IP address stores the certificate configuration file required by related configuration of
all nodes , fisco-bcos executable program, and SDK in the server.

• The node* folder under each IP folder stores configuration file required by the node. config.ini is the
main configuration of node. In conf directory, to store certificate files and group related configurations.
For the configuration detail, please refer to here. Each node provides two scripts which are used to start and
stop the node.

• Under each IP folder, two scripts providing start_all.sh and stop_all.sh are used to start and
stop all nodes.

nodes/
127.0.0.1

fisco-bcos # binary program
node0 # node0 folder

conf # configuration folder
ca.crt # chain root certificate
group.1.genesis # the initialized configuration of group1, the

→˓file cannot be changed
group.1.ini # the configuration file of group1
node.crt # node certificate
node.key # node private key
node.nodeid # node id, represented by hexadecimal of public key

config.ini # node main configuration file, to configure listening IP,
→˓port, etc.

start.sh # start script, uses for starting node
stop.sh # stop script, uses for stopping node

node1 # node1 folder
.....

node2 # node2 folder
.....

node3 # node3 folder
.....

sdk # SDK needs to be used
ca.crt # chain root certificate
sdk.crt # The certificate file required by SKD, to use when

→˓establishing a connection
sdk.key # The private key file required by SKD, to use when

→˓establishing a connection
cert # certificate folder

agency # agency certificate folder
agency.crt # agency certificate
agency.key # agency private key
agency.srl
ca-agency.crt
ca.crt
cert.cnf

ca.crt # chain certificate
ca.key # chain private key
ca.srl
cert.cnf

6.4. Chain building script 49

./configuration.html#id6

FISCO BCOS EN Documentation, Release v2.2.0

6.4.5 Example

Single-server and single-group

To build a 4-node FISCO BCOS alliance chain on native machine for using the default start port 30300,20200,
8545 (4 nodes will occupy 30300-30303,20200-20203,8545-8548) and listening to the external network
Channel and jsonrpc ports while allowing the external network interacts with node through SDK or API.

to build FISCO BCOS alliance chain
$ bash build_chain.sh -l "127.0.0.1:4" -i
after generating successes, to output `All completed` to mention
Generating CA key...
==
Generating keys ...
Processing IP:127.0.0.1 Total:4 Agency:agency Groups:1
==
Generating configurations...
Processing IP:127.0.0.1 Total:4 Agency:agency Groups:1
==
[INFO] FISCO-BCOS Path : bin/fisco-bcos
[INFO] Start Port : 30300 20200 8545
[INFO] Server IP : 127.0.0.1:4
[INFO] State Type : storage
[INFO] RPC listen IP : 0.0.0.0
[INFO] Output Dir : /Users/fisco/WorkSpace/FISCO-BCOS/tools/nodes
[INFO] CA Key Path : /Users/fisco/WorkSpace/FISCO-BCOS/tools/nodes/cert/ca.
→˓key
==
[INFO] All completed. Files in /Users/fisco/WorkSpace/FISCO-BCOS/tools/nodes

Add new node into Groups

This section takes Group1 generated in the previous section as an example to add a consensus node.

Generate private key certificates for new node

The next operation is done under the nodes/127.0.0.1 directory generated in the previous section.

1. Acquisition certificate generation script

curl -LO https://raw.githubusercontent.com/FISCO-BCOS/FISCO-BCOS/master/tools/gen_
→˓node_cert.sh

1. Generating new node private key certificates

-c specify the path where the certificate and private key are located
-o Output to the specified folder, where new certificates and private keys
→˓issued by agency agency1 exist in newNode/conf

bash gen_node_cert.sh -c ../cert/agency -o newNode

If you use guomi version of fisco, please execute below command to generate cert.

bash gen_node_cert.sh -c ../cert/agency -o newNodeGm -g ../gmcert/agency/

Preparing configuration files

1. Copy Node 0 Profile and Tool Script in Group 1

50 Chapter 6. Manual (Revision in progress)

FISCO BCOS EN Documentation, Release v2.2.0

cp node0/config.ini newNode/config.ini
cp node0/conf/group.1.genesis newNode/conf/group.1.genesis
cp node0/conf/group.1.ini newNode/conf/group.1.ini
cp node0/*.sh newNode/
cp -r node0/scripts newNode/

1. Update IP and ports monitored in newNode/config.ini, include IP and Port in [rpc] and [p2p]。

2. Add IP and Port in the new node’s P2P configuration to the [p2p] field in the original node’s config.ini.
Assuming that the new node IP: Port is 127.0.0.1:30304, the modified [P2P] configuration is

[p2p]
listen_ip=0.0.0.0
listen_port=30300
;enable_compress=true
; nodes to connect
node.0=127.0.0.1:30300
node.1=127.0.0.1:30301
node.2=127.0.0.1:30302
node.3=127.0.0.1:30303
node.4=127.0.0.1:30304

3. Start node, use newNode/start.sh

4. Add new nodes to group 1 through console, refer to here and here

Start a new node, check links and consensus

Multi-server and multi-group

Using the build_chain script to build a multi-server and multi-group FISCO BCOS alliance chain requires the
script configuration file. For details, please refer to here.

6.5 Certificate description

FISCO BCOS network adopts a CA-oriented access mechanism to support any multi-level certificate structure for
ensuring information confidentiality, authentication, integrity, and non-repudiation.

FISCO BCOS uses the x509 protocol certificate format. According to the existing business scenario, a three level
certificate structure is adopted by default, and from top to bottom, the three levels are chain certificate, agency
certificate, and node certificate respective.

In multi-group architecture, a chain has a chain certificate and a corresponding chain private key, and the chain
private key is jointly managed by alliance chain committee. Alliance chain committee can use the agency’s
certificate request file agency.csr to issue the agency certificate agency.crt.

Agency private key held by the agency administrator can issue node certificate to the agency’s subordinate nodes.

Node certificate is the credential of node identity and uses this certificate to establish an SSL connection with
other nodes for encrypted communication.

sdk certificate is a voucher for sdk communicating with node. Agency generates sdk certificate that allows sdk to
do that.

The files’ suffixes of FISCO BCOS node running are described as follows:

6.5.1 Role definition

There are four roles in the FISCO BCOS certificate structure, namely the alliance chain committee administrator,
agency, node, and SDK.

6.5. Certificate description 51

./console.html#addsealer
./node_management.html#id7
https://en.wikipedia.org/wiki/X.509

FISCO BCOS EN Documentation, Release v2.2.0

Alliance chain committee

• The alliance chain committee manages private key of chain, and issues agency certificate according to
agency’s certificate request document agency.csr.

ca.crt chain certificate
ca.key chain private key

When FISCO BCOS performs SSL encrypted communication, only the node with the same chain certificate ca.
crt can establish a connection.

Agency

• Agency has an agency private key that can issue node certificate and SDK certificate.

ca.crt chain certificate
agency.crt agency certificate
agency.csr agency certificate request file
agency.key agency private key

Node/SDK

• FISCO BCOS nodes include node certificates and private keys for establishing SSL encrypted connection
among nodes;

• SDK includes SDK certificate and private key for establishing SSL encrypted connection with blockchain
nodes.

ca.crt #chain certificate
node.crt #node certificate
node.key #node private key
sdk.crt #SDK certificate
sdk.key #SDK private key

Node certificate node.crt includes the node certificate and the agency certificate information. When the node
communicates with other nodes/SDKs, it will sign the message with its own private key node.key, and send its
own node.crt to nodes/SDKs to verify.

6.5.2 Certificate generation process

FISCO BCOS certificate generation process is as follows. Users can also use the Enterprise Deployment Tool to
generate corresponding certificate

Chain certificate generation

• Alliance chain committee uses openssl command to request chain private key ca.key, and generates chain
certificate ca.crt according to ca.key.

Agency certificate generation

• Agency uses openssl command to generate agency private key agency.key

• Agency uses private key agency.key to get agency certificate request file agency.csr, and sends
agency.csr to alliance chain committee.

52 Chapter 6. Manual (Revision in progress)

FISCO BCOS EN Documentation, Release v2.2.0

• Alliance chain committee uses chain private key ca.key to generate the agency certificate agency.crt
according to the agency certificate request file agency.csr. And send agency certificate agency.crt
to corresponding agency.

Node/SDK certificate generation

• The node generates the private key node.key and the certificate request file node.csr. The agency
administrator uses the private key agency.key and the certificate request file node.csr to issue the
certificate to the node/SDK.

6.5.3 TODO

6.6 Configuration files and configuration items

FISCO BCOS supports multiple ledger. Each chain includes multiple unique ledgers, whose data among them are
isolated from each other. And the transaction processing among groups are also isolated. Each node includes a
main configuration config.ini and multiple ledger configurations group.group_id.genesis, group.
group_id.ini.

• config.ini: The main configuration file, mainly configures with RPC, P2P, SSL certificate, ledger
configuration file path, compatibility and other information.

• group.group_id.genesis：group configurations file. All nodes in the group are consistent. After
node launches, you cannot manually change the configuration including items like group consensus algo-
rithm, storage type, and maximum gas limit, etc.

• group.group_id.ini：group variable configuration file, including the transaction pool size, etc.. All
configuration changes are effective after node restarts.

6.6.1 Main configuration file config.ini

config.ini uses ini format. It mainly includes the configuration items like ** rpc, p2p, group, secure and
log **.

Important:

• The public IP addresses of the cloud host are virtual IP addresses. If listen_ip is filled in external network
IP address, the binding fails. You must fill in 0.0.0.0.

• RPC/P2P/Channel listening port must be in the range of 1024-65535 and cannot conflict with other appli-
cation listening ports on the machine.

Configure RPC

• listen_ip: For security reasons, the chain building script will listen to 127.0.0.1 by default. If you need
to access the RPC or use SDK through external network, please listen to external network IP address of
node or 0.0.0.0;

• channel_listen_port: Channel port, is corresponding to channel_listen_port in Web3SDK
configuration;

• jsonrpc_listen_port: JSON-RPC port.

RPC configuration example is as follows:

6.6. Configuration files and configuration items 53

../sdk/sdk.html#id2

FISCO BCOS EN Documentation, Release v2.2.0

[rpc]
listen_ip=127.0.0.1
channel_listen_port=30301
jsonrpc_listen_port=30302

Configure P2P

The current version of FISCO BCOS must be configured with IP and Port of the connection node in the
config.ini configuration. The P2P related configurations include:

• listen_ip: P2P listens for IP, to set 0.0.0.0 by default.

• listen_port: Node P2P listening port.

• node.*: All nodes’ IP:Port or DomainName:Port which need to be connected to node. This option
supports domain names, but suggests users who need to use it manually compile source code.

• enable_compress: Enable network compression configuration option. Configuring to true, indicates
that network compression is enabled. Configuring to false, indicates that network compression is disabled.
For details on network compression, please refer to [here](../design/features/network_compress .md).

P2P configuration example is as follows:

[p2p]
listen_ip=0.0.0.0
listen_port=30300
node.0=127.0.0.1:30300
node.1=127.0.0.1:30304
node.2=127.0.0.1:30308
node.3=127.0.0.1:30312

Configure ledger file path

[group]To configure all group configuration paths which this node belongs:

• group_data_path: Group data storage path.

• group_config_path: Group configuration file path.

Node launches group according to all .genesis suffix files in the group_config_path path.

[group]
; All group data is placed in the node's data subdirectory
group_data_path=data/
; Program automatically loads all .genesis files in the path
group_config_path=conf/

Configure certificate information

For security reasons, communication among FISCO BCOS nodes uses SSL encrypted communica-
tion.[network_security] configure to SSL connection certificate information:

• data_path：Directory where the certificate and private key file are located.

• key: The data_path path that node private key relative to.

• cert: The data_path path that certificate node.crt relative to.

• ca_cert: ca certificate file path.

• ca_path: ca certificate folder, required for multiple ca.

54 Chapter 6. Manual (Revision in progress)

https://fisco-bcos-documentation.readthedocs.io/zh_CN/latest/docs/manual/get_executable.html#id2

FISCO BCOS EN Documentation, Release v2.2.0

[network_security]
data_path=conf/
key=node.key
cert=node.crt
ca_cert=ca.crt
;ca_path=

Configure blacklist

For preventing vice, FISCO BCOS allows nodes to configure untrusted node blacklist to reject establishing con-
nections with these blacklist nodes. To configure blacklist through [crl]:

crl.idx: Blacklist node’s Node ID, can get from node.nodeid file; idx is index of the blacklist
node.

For details of the blacklist, refer to [CA Blacklist].(./certificate_list.md)

Blacklist configuration example is as follows:

; certificate blacklist
[crl]

crl.
→˓0=4d9752efbb1de1253d1d463a934d34230398e787b3112805728525ed5b9d2ba29e4ad92c6fcde5156ede8baa5aca372a209f94dc8f283c8a4fa63e
3787c338a4

Configure log information

FISCO BCOS supports boostlog. Configurations:

• enable: Enable/disable log. Set to true to enable log; set to false to disable log. set to true by
default. For performance test, to set this option to false to reduce the impact of print log on test
results

• log_path:log file patch.

• level: log level, currently includes 5 levels which are trace、debug、info、warning、error.After
setting a certain log level, the log file will be entered with a log equal to or larger than this level.The log
level is sorted from large to small by error > warning > info > debug > trace.

• max_log_file_size：Maximum size per log file, ** unit of measure is bytes, default is 200MB**

• flush：boostlog enables log auto-refresh by default. To improves system performance, it is recommended
to set this value to false.

boostlog configuration example is as follows:

[log]
; whether to enable log, set to true by default
enable=true
log_path=./log
level=info
; Maximum size per log file, default is 200MB
max_log_file_size=200
flush=true

Configure node compatibility

All versions of FISCO BCOS 2.0+ are forward compatible. You can configure the compatibility of node through
[compatibility] in config.ini. The tool will be automatically generated when changing the configura-
tion item to build chain, so users do not need to change it.

6.6. Configuration files and configuration items 55

https://www.boost.org/doc/libs/1_63_0/libs/log/doc/html/index.html

FISCO BCOS EN Documentation, Release v2.2.0

• supported_version：The version of the current node running

Important:

• view the latest version of FISCO BCOS currently supports through the command ‘‘./fisco-bcos –version |
grep “Version” ‘‘

• In the blockchain node configuration generated by build_chain.sh, supported_version is configured to the
current latest version of FISCO BCOS

• When upgrading an old node to a new node, directly replace the old FISCO BCOS binary with the latest
FISCO BCOS binary.

FISCO BCOS 2.2.0 node’s [compatibility] configuration is as follows:

[compatibility]
supported_version=2.2.0

Optional configuration: Disk encryption

In order to protect node data, FISCO BCOS introduces Disk Encryption to ensure confidentiality. Disk Encryp-
tion Operation Manual Reference.

storage_security in config.ini is used to configure disk encryption. It mainly includes (for the opera-
tion of the disk encryption, please refer to Operation Manual):

• enable：whether to launch disk encryption, not to launch by default;

• key_manager_ip：Key Managerservice’s deployment IP;

• key_manager_port：Key Managerservice’s listening port；

• cipher_data_key: ciphertext of node data encryption key. For cipher_data_key generation, refer
to disk encryption operation manual.

disk encryption configuration example is as follows:

[storage_security]
enable=true
key_manager_ip=127.0.0.1
key_manager_port=31443
cipher_data_key=ed157f4588b86d61a2e1745efe71e6ea

6.6.2 Group system configuration instruction

Each group has unique separate configuration file, which can be divided into group system configuration and
group variable configuration according to whether it can be changed after launch. group system configuration
is generally located in the .genesis suffix configuration file in node’s conf directory.

For example:group1 system configuration generally names as group.1.genesis. Group system configura-
tion mainly includes the related configuration of group ID、、、consensus, storage and gas.

Important: When configuring the system configuration, you need to pay attention to:

• configuration group must be consistent: group system configuration is used to generate the genesis block
(block 0), so the configurations of all nodes in the group must be consistent.

• node cannot be modified after launching：system configuration has been written to the system table as
genesis block, so it cannot be modified after chain initializes.

• After chain is initialized, even if genesis configuration is modified, new configuration will not take effect,
and system still uses the genesis configuration when initializing the chain.

56 Chapter 6. Manual (Revision in progress)

https://github.com/FISCO-BCOS/key-manager
https://github.com/FISCO-BCOS/key-manager

FISCO BCOS EN Documentation, Release v2.2.0

• Since genesis configuration requires all nodes in the group to be consistent, it is recommended to use
build_chain to generate the configuration.

Group configuration

[group]configures group ID. Node initializes the group according to the group ID.

group2’s configuration example is as follows:

[group]
id=2

Consensus configuration

[consensus] involves consensus-related configuration, including:

• consensus_type：consensus algorithm type, currently supports PBFT and Raft. To use PBFT by de-
fault;

• max_trans_num：a maximum number of transactions that can be packed in a block. The default is 1000.
After the chain is initialized, the parameter can be dynamically adjusted through Console;

• node.idx：consensus node list, has configured with the [Node ID] of the participating consensus nodes.
The Node ID can be obtained by the ${data_path}/node.nodeid file (where ${data_path} can
be obtained by the configuration item [secure].data_path of the main configuration config.ini)

; Consensus protocol configuration
[consensus]

;consensus algorithm, currently supports PBFT(consensus_type=pbft) and
→˓Raft(consensus_type=raft)

consensus_type=pbft
; maximum number of transactions in a block
max_trans_num=1000
; leader node's ID lists
node.

→˓0=123d24a998b54b31f7602972b83d899b5176add03369395e53a5f60c303acb719ec0718ef1ed51feb7e9cf4836f266553df44a1cae5651bc6ddf50
e01789233a

node.
→˓1=70ee8e4bf85eccda9529a8daf5689410ff771ec72fc4322c431d67689efbd6fbd474cb7dc7435f63fa592b98f22b13b2ad3fb416d136878369eb41
3494db8776

node.
→˓2=7a056eb611a43bae685efd86d4841bc65aefafbf20d8c8f6028031d67af27c36c5767c9c79cff201769ed80ff220b96953da63f92ae83554962dc2
922aa0ef50

node.
→˓3=fd6e0bfe509078e273c0b3e23639374f0552b512c2bea1b2d3743012b7fed8a9dec7b47c57090fa6dcc5341922c32b89611eb9d967dba5f5d07be7
4a5aed2b4a

State mode configuration

state is used to store blockchain status information. It locates in the genesis file [state]:

• type: state type, currently supports storage state and MPT state, defaults to Storage state. storage state
storing the transaction execution result in the system table, which is more efficient. MPT state storing the
transaction execution result in the MPT tree, which is inefficient but contains complete historical informa-
tion.

Important: The storage state is recommended.

6.6. Configuration files and configuration items 57

build_chain.html
./console.html#setsystemconfigbykey
../design/storage/mpt.html
../design/storage/storage.html#id6
../design/storage/mpt.html

FISCO BCOS EN Documentation, Release v2.2.0

[state]
type=storage

Gas configuration

FISCO BCOS is compatible with Ethereum virtual machine (EVM). In order to prevent DOS from attacking
EVM, EVM introduces the concept of gas when executing transactions, which is used to measure the computing
and storage resources consumed during the execution of smart contracts. The measure includes the maximum gas
limit of transaction and block. If the gas consumed by the transaction or block execution exceeds the gas limit, the
transaction or block is discarded.

FISCO BCOS is alliance chain that simplifies gas design. It retains only maximum gas limit of transaction, and
maximum gas of block is constrained together by consensus configuration max_trans_num and transaction
maximum gas limit.

FISCO BCOS configures maximum gas limit of the transaction through genesis [tx].gas_limit. The default
value is 300000000. After chain is initialized, the gas limit can be dynamically adjusted through the console
command.

[tx]
gas_limit=300000000

6.6.3 Ledger variable configuration instruction

Variable configuration of the ledger is located in the file of the .ini suffix in the node conf directory.

For example: group1 variable configuration is generally named group.1.ini. Variable configuration mainly
includes transaction pool size, PBFT consensus message forwarding TTL, PBFT consensus packing time setting,
PBFT transaction packaging dynamic adjustment setting, parallel transaction settings, etc..

Configure storage

Storage currently supports three modes: RocksDB, MySQL, and External. Users can choose the DB to use
according to their needs. RocksDB has the highest performance. MySQL supports users to use MySQL database
for viewing data. External accesses mysql through data proxy, and users need to start and configure the data
proxy. The design documentation can be referenced AMDB Storage Design. Since the RC3 version, we have
used RocksDB instead of LevelDB for better performance, but still supports LevelDB.

Public configuration item

Important: If you want to use MySQL, please set type to MySQL.

• type: The stored DB type, which supports RocksDB, MySQL and External. When the DB type
is RocksDB, all the data of blockchain system is stored in the RocksDB local database; when the type
is MySQL or External, the node accesses mysql database according to the configuration. All data of
blockchain system is stored in mysql database. For accessing mysql database, to configure the amdb-proxy.
Please refer to here for the amdb-proxy configuration.

• max_capacity: configures the space size of the node that is allowed to use for memory caching.

• max_forward_block: configures the space size of the node that allowed to use for memory block.
When the blocks exceeds this value, the node stops the consensus and waits for the blocks to be written to
database.

• binary_log: default is false. when set to true, enable binary log, and then disable the wal of rocksdb.

58 Chapter 6. Manual (Revision in progress)

./configs.html#id8
./console.html#setsystemconfigbykey
./console.html#setsystemconfigbykey
../design/storage/storage.html
./distributed_storage.html#amdb

FISCO BCOS EN Documentation, Release v2.2.0

• cached_storage: controls whether to use the cache. The default is true.

Database related configuration item

• topic: When the type is External, you need to configure this field to indicate the amdb-proxy topic
that blockchain system is interested in. For details, please refer to here.

• max_retry: When the type is External, you need to configure this field to indicate the number of
retries when writing fails. For details, please refer to here.

• scroll_threshold_multiple： when the type is scalable, this configuration item is used to
configure the handover threshold of the block database. The default value is 2, so Block data is stored in
different rocksdb instances every 2000 blocks.

• db_ip: When the type is MySQL, you need to configure this field to indicate the IP address of MySQL.

• db_port: When the type is MySQL, you need to configure this field to indicate the port number of MySQL.

• db_username: When the type is MySQL, you need to configure this field to indicate the MySQL user-
name.

• db_passwd: When the type is MySQL, you need to configure this field to indicate the password corre-
sponding to the MySQL user.

• db_name: When the type is MySQL, you need to configure this field to indicate the database name used in
MySQL.

• init_connections: When the type is MySQL, this field can be optionally configured to indicate the
initial number of connections established with MySQL. The default value is 15, and it is fine to use it.

• max_connections: When the type is MySQL, this field can be optionally configured to indicate the
maximum number of connections established with MySQL. The default value is 20, and it is fine to use it.

The following is an example of the configuration of [storage]:

[storage]
; storage db type, rocksdb / mysql / external, rocksdb is recommended
type=RocksDB
max_capacity=256
max_forward_block=10
; only for external
max_retry=100
topic=DB
; only for mysql
db_ip=127.0.0.1
db_port=3306
db_username=
db_passwd=
db_name=

Transaction pool configuration

FISCO BCOS opens the transaction pool capacity configuration to users. Users can dynamically adjust the trans-
action pool size according to their business size requirements, stability requirements, and node hardware configu-
ration.

Transaction pool configuration example is as follows:

[tx_pool]
limit=150000

6.6. Configuration files and configuration items 59

./distributed_storage.html#id3
./distributed_storage.html#id3

FISCO BCOS EN Documentation, Release v2.2.0

PBFT consensus message broadcast configuration

In order to ensure the maximum network fault tolerance of the consensus process, each consensus node broadcasts
the message to other nodes after receiving a valid consensus message. In smooth network environment, the
consensus message forwarding mechanism will waste additional network bandwidth, so the ttl is introduced in
the group variable configuration item to control the maximum number of message forwarding. The maximum
number of message forwarding is ttl-1, and the configuration item is valid only for PBFT.

Setting consensus message to be forwarded at most once configuration example is as follows:

; the ttl for broadcasting pbft message
[consensus]
ttl=2

PBFT consensus packing time configuration

The PBFT module packing too fast causes only 1 to 2 transactions to be pack in some blocks. For avoid-
ing wasting storage space, FISCO BCOS v2.0.0-rc2 introduces min_block_generation_time configu-
ration item in the group variable configuration group.group_id.ini’s [consensus] to manager the
minimum time for PBFT consensus packing. That is, when the consensus node packing time exceeds
min_block_generation_time and the number of packaged transactions is greater than 0, the consensus
process will start and handle the new block generated by the package.

Important:

• min_block_generation_time is 500ms by default

• The longest packing time of consensus node is 1000ms. If the time is exceeded 1000ms and the number
of transactions packed in the new block is still 0, the consensus module will enter the logic of empty block
generation, and the empty block will not be written to disk;

• min_block_generation_time cannot exceed the time of empty block generation which is 1000ms.
If the set value exceeds 1000ms, the system defaults min_block_generation_time to be 500ms.

[consensus]
;min block generation time(ms), the max block generation time is 1000 ms
min_block_generation_time=500

PBFT transaction package dynamic adjustment

For the impact causing by CPU loading and network latency on system processing power, PBFT provides
an algorithm that dynamically adjusts the maximum number of transactions that can be packed in a block.
The algorithm dynamically can adjust the maximum number of transactions according to the state of his-
torical transaction processing. The algorithm is turned on by default, and it can be turned off by chang-
ing the [consensus].enable_dynamic_block_size configuration item of the variable configuration
group.group_id.ini to false. At this time, the maximum number of transactions in the block is the
[consensus].max_trans_num of group.group_id.genesis.

The configuration of closing the dynamic adjustment algorithm for the block package transaction number is as
follows:

[consensus]
enable_dynamic_block_size=false

60 Chapter 6. Manual (Revision in progress)

FISCO BCOS EN Documentation, Release v2.2.0

Parallel transaction configuration

FISCO BCOS supports execution of transactions in parallel. Turning on the transaction parallel execution switch
to enable for improving throughput. Execution of the transaction in parallel is only effective in the storage
state mode.

[tx_execute]
enable_parallel=true

6.6.4 Dynamically configure system parameters

FISCO BCOS system currently includes the following system parameters (other system parameters will be ex-
tended in the future):

Console provides setSystemConfigByKey command to modify these system parameters. getSystemConfig-
ByKey command can view the current value of the system parameter:

Important: It is not recommended to modify tx_count_limit and tx_gas_limit arbitrarily. These parameters can
be modified as follows:

• Hardware performance such as machine network or CPU is limited: to reduce tx_count_limit for reducing
business pressure;

• gas is insufficient when executing transactions for comlicated business logic: increase tx_gas_limit.

To set the maximum number of transactions of a packaged block to 500

> setSystemConfigByKey tx_count_limit 500
inquiry tx_count_limit
> getSystemConfigByKey tx_count_limit
[500]

To set transaction gas limit as 400000000
> getSystemConfigByKey tx_gas_limit 400000000
> getSystemConfigByKey
[400000000]

6.7 Deploy Multi-Group Blockchain System

This chapter takes the star networking and parallel multi-group networking as an example to guide you to the
following.

• Learn to deploy multi-group blockchain with build_chain.sh shell script;

• Understand the organization of the multi-group blockchain created by build_chain.sh

• Learn how to start the blockchain node and get the consensus status of each group through the log;

• Learn how to send transactions to the given group and get the block generation status through the log;

• Understand node management of the blockchain system, including how to add/remove the given consensus
node;

• Learn how to create a new group.

Important:

6.7. Deploy Multi-Group Blockchain System 61

./console.html#setsystemconfigbykey
./console.html#getsystemconfigbykey
./console.html#getsystemconfigbykey

FISCO BCOS EN Documentation, Release v2.2.0

• build_chain.sh is suitable for developers and users to use quickly, does not support expansion opera-
tions

• Build an enterprise-level business chain, recommend to use generator

6.7.1 Introduction of star networking topology and parallel multi-group network-
ing topology

As shown in the following figure, the star networking topology and the parallel multi-group networking topology
are two widely used networking methods in blockchain applications.

• Star networking topology: The nodes of the central agency belong to multiple groups, and runs multiple
institutional applications. Nodes of the other agencies belongs to different groups and runs their respective
applications;

• Parallel multi-group networking topology: Each node in the blockchain belongs to multiple groups and
can be used for multi-service expansion or multi-node expansion of the same service.

The following is a detailed description of how to deploy a eight-node star networking blockchain system and a
four-node parallel multi-group networking blockchain.

6.7.2 Installation dependency

Before deploying the FISCO BCOS blockchain, you need to install software such as openssl, curl, etc. The
specific commands are as follows:

CentOS
$ sudo yum install -y openssl curl

Ubuntu
$ sudo apt install -y openssl curl

Mac OS
$ brew install openssl curl

6.7.3 Star networking topology

In this chapter, we deploy a star networking blockchain system with four agencies, three groups and eight nodes
in the local machine.

Here is the detailed configuration of star networking blockchain:

• agencyA: belongs to group1、group2、group3, including 2 nodes with the same IP address 127.
0.0.1;

62 Chapter 6. Manual (Revision in progress)

../enterprise_tools/index.html

FISCO BCOS EN Documentation, Release v2.2.0

• agencyB: belongs to group1, including 2 nodes with the same IP address 127.0.0.1;

• agencyC: belongs to group2, including 2 nodes with the same IP address 127.0.0.1;

• agencyD: belongs to group3, including 2 nodes with the same IP address 127.0.0.1.

In a star network topology, the core node (in this case, the agencyA node) belongs to all groups and has a high
load. It is recommended to deploy it separately on a machine with better performance.

Important:

• In the actual application scenario, it is not recommended to deploy multiple nodes on the same ma-
chine. It is recommended to select the number of deployed nodes in one machine according to the machine
loading. Please refer to the hardware configuration

• In a star network topology, the core node (in this case, the agencyA node) belongs to all groups and has a
high load. It is recommended to deploy it separately on a machine with better performance.

• When operating in different machines, please copy the generated IP folder to the corresponding ma-
chine to start. The chain building operation only needs to be performed once!

Generate configuration for star networking blockchain

build_chain.sh supports to generate configurations for blockchain with any topology, you can use this script
to build configuration for the star networking blockchain.

Prepare for dependency

• Create an operation directory

mkdir -p ~/fisco && cd ~/fisco

• Download the build_chain.sh script

curl -LO https://github.com/FISCO-BCOS/FISCO-BCOS/releases/download/v2.2.0/build_
→˓chain.sh && chmod u+x build_chain.sh

Generate configuration for star networking blockchain system

Generate ip_list(configuration)
$ cat > ipconf << EOF
127.0.0.1:2 agencyA 1,2,3
127.0.0.1:2 agencyB 1
127.0.0.1:2 agencyC 2
127.0.0.1:2 agencyD 3
EOF

Check the content of ip_list
$ cat ipconf
Meaning of the space-separated parameters:
ip:num: IP of the physical machine and the number of nodes
agency_name: agency name
group_list: the list of groups the nodes belong to, groups are separated by comma
127.0.0.1:2 agencyA 1,2,3
127.0.0.1:2 agencyB 1
127.0.0.1:2 agencyC 2
127.0.0.1:2 agencyD 3

Create node configuration folder for star networking blockchain using build_chain script

Please refer to the build_chain for more parameter descriptions of build_chain.sh.

6.7. Deploy Multi-Group Blockchain System 63

../manual/configuration.html

FISCO BCOS EN Documentation, Release v2.2.0

Generate a blockchain of star networking and make sure ports 30300~30301, 20200~
→˓20201, 8545~8546 of the local machine are not occupied
$ bash build_chain.sh -f ipconf -p 30300,20200,8545
Generating CA key...
==
Generating keys ...
Processing IP:127.0.0.1 Total:2 Agency:agencyA Groups:1,2,3
Processing IP:127.0.0.1 Total:2 Agency:agencyB Groups:1
Processing IP:127.0.0.1 Total:2 Agency:agencyC Groups:2
Processing IP:127.0.0.1 Total:2 Agency:agencyD Groups:3
==
......Here to omit other outputs......
==
[INFO] FISCO-BCOS Path : ./bin/fisco-bcos
[INFO] IP List File : ipconf
[INFO] Start Port : 30300 20200 8545
[INFO] Server IP : 127.0.0.1:2 127.0.0.1:2 127.0.0.1:2 127.0.0.1:2
[INFO] State Type : storage
[INFO] RPC listen IP : 127.0.0.1
[INFO] Output Dir : /home/ubuntu16/fisco/nodes
[INFO] CA Key Path : /home/ubuntu16/fisco/nodes/cert/ca.key
==
[INFO] All completed. Files in /home/ubuntu16/fisco/nodes

The generated node file is as follows:
nodes
|-- 127.0.0.1
| |-- fisco-bcos
| |-- node0
| | |-- conf # node configuration folder
| | | |-- ca.crt
| | | |-- group.1.genesis
| | | |-- group.1.ini
| | | |-- group.2.genesis
| | | |-- group.2.ini
| | | |-- group.3.genesis
| | | |-- group.3.ini
| | | |-- node.crt
| | | |-- node.key
| | | `-- node.nodeid # stores the information of Node ID
| | |-- config.ini # node configuration file
| | |-- start.sh # shell script to start the node
| | `-- stop.sh # shell script to stop the node
| |-- node1
| | |-- conf
......omit other outputs here......

Note: If the generated nodes belong to different physical machines, the blockchain nodes need to be copied to
the corresponding physical machine.

Start node

FISCO-BCOS provides the start_all.sh and stop_all.sh scripts to start and stop the node.

Switch to the node directory
$ cd ~/fisco/nodes/127.0.0.1

Start the node
$ bash start_all.sh

(continues on next page)

64 Chapter 6. Manual (Revision in progress)

FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

Check node process
$ ps aux | grep fisco-bcos
ubuntu16 301 0.8 0.0 986644 7452 pts/0 Sl 15:21 0:00 /home/
→˓ubuntu16/fisco/nodes/127.0.0.1/node5/../fisco-bcos -c config.ini
ubuntu16 306 0.9 0.0 986644 6928 pts/0 Sl 15:21 0:00 /home/
→˓ubuntu16/fisco/nodes/127.0.0.1/node6/../fisco-bcos -c config.ini
ubuntu16 311 0.9 0.0 986644 7184 pts/0 Sl 15:21 0:00 /home/
→˓ubuntu16/fisco/nodes/127.0.0.1/node7/../fisco-bcos -c config.ini
ubuntu16 131048 2.1 0.0 1429036 7452 pts/0 Sl 15:21 0:00 /home/
→˓ubuntu16/fisco/nodes/127.0.0.1/node0/../fisco-bcos -c config.ini
ubuntu16 131053 2.1 0.0 1429032 7180 pts/0 Sl 15:21 0:00 /home/
→˓ubuntu16/fisco/nodes/127.0.0.1/node1/../fisco-bcos -c config.ini
ubuntu16 131058 0.8 0.0 986644 7928 pts/0 Sl 15:21 0:00 /home/
→˓ubuntu16/fisco/nodes/127.0.0.1/node2/../fisco-bcos -c config.ini
ubuntu16 131063 0.8 0.0 986644 7452 pts/0 Sl 15:21 0:00 /home/
→˓ubuntu16/fisco/nodes/127.0.0.1/node3/../fisco-bcos -c config.ini
ubuntu16 131068 0.8 0.0 986644 7672 pts/0 Sl 15:21 0:00 /home/
→˓ubuntu16/fisco/nodes/127.0.0.1/node4/../fisco-bcos -c config.ini

Check consensus status of groups

When no transaction is sent, the node with normal consensus status will output +++ log. In this example, node0
and node1 belong to group1, group2 and group3; node2 and node3 belong to group1; node4 and
node5 belong to group2; node6 and node7 belong to group3. Check the status of node by tail -f
node*/log/* | grep "++".

Important:

Node with normal consensus status prints +++ log, fields of +++ log are defined as:

• g:: group ID;

• blkNum: the newest block number generated by the Leader node;

• tx: the number of transactions included in the new block;

• nodeIdx: the index of this node;

• hash: hash of the newest block generated by consensus nodes.

Check if node0 group1 is normal(Ctrl+c returns to the command line)
$ tail -f node0/log/* | grep "g:1.*++"
info|2019-02-11 15:33:09.914042| [g:1][p:264][CONSENSUS][SEALER]++++++++Generating
→˓seal on,blkNum=1,tx=0,nodeIdx=2,hash=72254a42....

Check if node0 group2 is normal
$ tail -f node0/log/* | grep "g:2.*++"
info|2019-02-11 15:33:31.021697| [g:2][p:520][CONSENSUS][SEALER]++++++++Generating
→˓seal on,blkNum=1,tx=0,nodeIdx=3,hash=ef59cf17...

... To check node1, node2 node for each group is normal or not, refer to the
→˓above operation method...

Check if node3 group1 is normal
$ tail -f node3/log/*| grep "g:1.*++"
info|2019-02-11 15:39:43.927167| [g:1][p:264][CONSENSUS][SEALER]++++++++Generating
→˓seal on,blkNum=1,tx=0,nodeIdx=3,hash=5e94bf63...

Check if node5 group2 is normal
$ tail -f node5/log/* | grep "g:2.*++"
info|2019-02-11 15:39:42.922510| [g:2][p:520][CONSENSUS][SEALER]++++++++Generating
→˓seal on,blkNum=1,tx=0,nodeIdx=2,hash=b80a724d...

6.7. Deploy Multi-Group Blockchain System 65

FISCO BCOS EN Documentation, Release v2.2.0

Configuration console

The console connects to the FISCO BCOS node through the Web3SDK, it is used to query the blockchain status
and deploy the calling contract, etc. Detailed instructions of console is here.

Important: The console relies on Java 8 and above, and Ubuntu 16.04 system needs be installed with openjdk 8.
Please install Oracle Java 8 or above for CentOS.

Switch back to ~/fisco folder
$ cd ~/fisco

Download console
$ bash <(curl -S https://raw.githubusercontent.com/FISCO-BCOS/console/master/tools/
→˓download_console.sh)

Switch to console directory
$ cd console

Copy node certificate of group 2 to the configuration directory of console
$ cp ~/fisco/nodes/127.0.0.1/sdk/* conf/

Obtain channel_listen_port of node0
$ grep "channel_listen_port" ~/fisco/nodes/127.0.0.1/node*/config.ini
/home/ubuntu16/fisco/nodes/127.0.0.1/node0/config.ini: channel_listen_port=20200
/home/ubuntu16/fisco/nodes/127.0.0.1/node1/config.ini: channel_listen_port=20201
/home/ubuntu16/fisco/nodes/127.0.0.1/node2/config.ini: channel_listen_port=20202
/home/ubuntu16/fisco/nodes/127.0.0.1/node3/config.ini: channel_listen_port=20203
/home/ubuntu16/fisco/nodes/127.0.0.1/node4/config.ini: channel_listen_port=20204
/home/ubuntu16/fisco/nodes/127.0.0.1/node5/config.ini: channel_listen_port=20205
/home/ubuntu16/fisco/nodes/127.0.0.1/node6/config.ini: channel_listen_port=20206
/home/ubuntu16/fisco/nodes/127.0.0.1/node7/config.ini: channel_listen_port=20207

Important: When connecting node with the console, we should make sure that the connected nodes are in the
group configured by the console

The configuration of the console configuration file conf/applicationContext.xml is as follows.. The
console is connected to three groups from node0 (127.0.0.1:20200), to get more information of console
configuration, please refer to here.

cat > ./conf/applicationContext.xml << EOF
<?xml version="1.0" encoding="UTF-8" ?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:p="http://

→˓www.springframework.org/schema/p"
xmlns:tx="http://www.springframework.org/schema/tx" xmlns:aop="http://

→˓www.springframework.org/schema/aop"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/tx

http://www.springframework.org/schema/tx/spring-tx-2.5.xsd
http://www.springframework.org/schema/aop

http://www.springframework.org/schema/aop/spring-aop-2.5.xsd">

<bean id="encryptType" class="org.fisco.bcos.web3j.crypto.EncryptType">
<constructor-arg value="0"/> <!-- 0:standard 1:guomi -->

</bean>

(continues on next page)

66 Chapter 6. Manual (Revision in progress)

../manual/console.html#id7

FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

<bean id="groupChannelConnectionsConfig" class="org.fisco.bcos.channel.
→˓handler.GroupChannelConnectionsConfig">

<property name="allChannelConnections">
<list>

<bean id="group1" class="org.fisco.bcos.channel.handler.
→˓ChannelConnections">

<property name="groupId" value="1" />
<property name="connectionsStr">
<list>
<value>127.0.0.1:20200</value>
</list>
</property>

</bean>
<bean id="group2" class="org.fisco.bcos.channel.handler.

→˓ChannelConnections">
<property name="groupId" value="2" />

<property name="connectionsStr">
<list>
<value>127.0.0.1:20200</value>
</list>
</property>

</bean>
<bean id="group3" class="org.fisco.bcos.channel.handler.

→˓ChannelConnections">
<property name="groupId" value="3" />

<property name="connectionsStr">
<list>
<value>127.0.0.1:20200</value>
</list>
</property>

</bean>
</list>
</property>
</bean>

<bean id="channelService" class="org.fisco.bcos.channel.client.Service"
→˓depends-on="groupChannelConnectionsConfig">

<property name="groupId" value="1" />
<property name="orgID" value="fisco" />
<property name="allChannelConnections" ref=

→˓"groupChannelConnectionsConfig"></property>
</bean>

</beans>
EOF

Start the console

$ bash start.sh
The following outputted information means the console has been successfully
→˓started. Otherwise, please check if the port configuration of the nodes in conf/
→˓applicationContext.xml is correct.
===
Welcome to FISCO BCOS console(1.0.3)!
Type 'help' or 'h' for help. Type 'quit' or 'q' to quit console.
________ ______ ______ ______ ______ _______ ______ ______ ______

| | \/ \ / \ / \ | \ / \ / \ /
→˓\
| $$$$$$$$\$$$$$| $$$$$$| $$$$$$| $$$$$$\ | $$$$$$$| $$$$$$| $$$$$$| $$$$$
→˓$\
| $$__ | $$ | $$___\$| $$ \$| $$ | $$ | $$__/ $| $$ \$| $$ | $| $$___\
→˓$$ (continues on next page)

6.7. Deploy Multi-Group Blockchain System 67

FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

| $$ \ | $$ \$$ \| $$ | $$ | $$ | $$ $| $$ | $$ | $$\$$
→˓\
| $$$$$ | $$ _\$$$$$$| $$ __| $$ | $$ | $$$$$$$| $$ __| $$ | $$_\$$$$$
→˓$\
| $$ _| $$_| __| $| $$__/ | $$__/ $$ | $$__/ $| $$__/ | $$__/ $| __|
→˓$$
| $$ | $$ \\$$ $$\$$ $$\$$ $$ | $$ $$\$$ $$\$$ $$\$$
→˓$$
\$$ \$$$$$$ \$$$$$$ \$$$$$$ \$$$$$$ \$$$$$$$ \$$$$$$ \$$$$$$ \$$$$$
→˓$

===
[group:1]>

Send transactions to groups

In the above section, we learned how to configure the console, this section will introduce how to send transactions
to groups through the console.

Important: In the group architecture, the ledgers are independent in each group. And sending transactions to
one group only increases the block number of this group but not others

Send transactions through console

... Send HelloWorld transaction to group1...
$ [group:1]> deploy HelloWorld
contract address:0x8c17cf316c1063ab6c89df875e96c9f0f5b2f744
Check the current block number of group1, if the block number is increased to 1,
→˓ it indicates that the blockchain is normal. Otherwise, please check if group1
→˓is abnormal.
$ [group:1]> getBlockNumber
1

... Send HelloWorld transaction to group2...
Switch to group2
$ [group:1]> switch 2
Switched to group 2.
Send transaction to group2, return a transaction hash indicates that the
→˓transaction is deployed successfully, otherwise, please check if the group2
→˓works normally.
$ [group:2]> deploy HelloWorld
contract address:0x8c17cf316c1063ab6c89df875e96c9f0f5b2f744
Check the current block number of group2, if the block number is increased to 1,
→˓ it indicates that the blockchain is normal. Otherwise, please check if group1
→˓is abnormal
$ [group:2]> getBlockNumber
1

... Send transaction to group3...
Switch to group3
$ [group:2]> switch 3
Switched to group 3.
Send transaction to group3, return a transaction hash indicates that the
→˓transaction is deployed successfully, otherwise, please check if the group2
→˓works normally.
$ [group:3]> deploy HelloWorld
contract address:0x8c17cf316c1063ab6c89df875e96c9f0f5b2f744
Check the current block number of group3, if the block number is increased to 1,
→˓ it indicates that the blockchain is normal. Otherwise, please check if group1
→˓is abnormal

(continues on next page)

68 Chapter 6. Manual (Revision in progress)

FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

$ [group:3]> getBlockNumber
1

... Switch to group 4 that does not exist: the console prompts that group4 does
→˓not exist, and outputs the current group list ...
$ [group:3]> switch 4
Group 4 does not exist. The group list is [1, 2, 3].

Exit the console
$ [group:3]> exit

Check the log

After the block is generated, the node will output Report log, which contains fields with following definitions:

Switch the node directory
$ cd ~/fisco/nodes/127.0.0.1

Check the block generation status of group1: new block generated
$ cat node0/log/* |grep "g:1.*Report"
info|2019-02-11 16:08:45.077484| [g:1][p:264][CONSENSUS][PBFT]^^^^^^^^Report,num=1,
→˓sealerIdx=1,hash=9b5487a6...,next=2,tx=1,nodeIdx=2

Check the block generation status of group2: new block generated
$ cat node0/log/* |grep "g:2.*Report"
info|2019-02-11 16:11:55.354881| [g:2][p:520][CONSENSUS][PBFT]^^^^^^^^Report,num=1,
→˓sealerIdx=0,hash=434b6e07...,next=2,tx=1,nodeIdx=0

Check the block generation status of group3: new block generated
$ cat node0/log/* |grep "g:3.*Report"
info|2019-02-11 16:14:33.930978| [g:3][p:776][CONSENSUS][PBFT]^^^^^^^^Report,num=1,
→˓sealerIdx=1,hash=3a42fcd1...,next=2,tx=1,nodeIdx=2

Node joins the group

Through the console, FISCO BCOS can add the specified node to the specified group, or delete the node from the
specified group. For details, please refer to the node admission management manual, for console configuration,
please reference console operation manual.

Taking how to join node2 to group2 as an example, this chapter introduces how to add a new node to an existing
group.

Copy group2 configuration to node2

Switch to node directory
$ cd ~/fisco/nodes/127.0.0.1

... Copy group2 configuration of node0 to node2 ...
$ cp node0/conf/group.2.* node2/conf

...Restart node2(make sure the node is in normal consensus after restart)...
$ cd node2 && bash stop.sh && bash start.sh

Get the ID of node2

Please remember the node ID of node2. Add node2 to group2 needs the node ID.
$ cat conf/node.nodeid
6dc585319e4cf7d73ede73819c6966ea4bed74aadbbcba1bbb777132f63d355965c3502bed7a04425d99cdcfb7694a1c133079e6d9b0ab080e3b874882b95ff4

Send commands to group2 through the console to add node2 into group2

6.7. Deploy Multi-Group Blockchain System 69

../manual/console.html#id7

FISCO BCOS EN Documentation, Release v2.2.0

...Go back to the console directory and launch the console (direct boot to
→˓group2)...
$ cd ~/fisco/console && bash start.sh 2

...Join node2 as a consensus node through the console...
1. Check current consensus node list
$ [group:2]> getSealerList
[

→˓9217e87c6b76184cf70a5a77930ad5886ea68aefbcce1909bdb799e45b520baa53d5bb9a5edddeab94751df179d54d41e6e5b83c338af0a19c0611200b830442,
→˓

→˓227c600c2e52d8ec37aa9f8de8db016ddc1c8a30bb77ec7608b99ee2233480d4c06337d2461e24c26617b6fd53acfa6124ca23a8aa98cb090a675f9b40a9b106,
→˓

→˓7a50b646fcd9ac7dd0b87299f79ccaa2a4b3af875bd0947221ba6dec1c1ba4add7f7f690c95cf3e796296cf4adc989f4c7ae7c8a37f4505229922fb6df13bb9e,
→˓

→˓8b2c4204982d2a2937261e648c20fe80d256dfb47bda27b420e76697897b0b0ebb42c140b4e8bf0f27dfee64c946039739467b073cf60d923a12c4f96d1c7da6
]
2. Add node2 to the consensus node
The parameter after addSealer is the node ID obtained in the previous step
$ [group:2]> addSealer
→˓6dc585319e4cf7d73ede73819c6966ea4bed74aadbbcba1bbb777132f63d355965c3502bed7a04425d99cdcfb7694a1c133079e6d9b0ab080e3b874882b95ff4
{

"code":0,
"msg":"success"

}
3. Check current consensus node list
$ [group:2]> getSealerList
[

→˓9217e87c6b76184cf70a5a77930ad5886ea68aefbcce1909bdb799e45b520baa53d5bb9a5edddeab94751df179d54d41e6e5b83c338af0a19c0611200b830442,
→˓

→˓227c600c2e52d8ec37aa9f8de8db016ddc1c8a30bb77ec7608b99ee2233480d4c06337d2461e24c26617b6fd53acfa6124ca23a8aa98cb090a675f9b40a9b106,
→˓

→˓7a50b646fcd9ac7dd0b87299f79ccaa2a4b3af875bd0947221ba6dec1c1ba4add7f7f690c95cf3e796296cf4adc989f4c7ae7c8a37f4505229922fb6df13bb9e,
→˓

→˓8b2c4204982d2a2937261e648c20fe80d256dfb47bda27b420e76697897b0b0ebb42c140b4e8bf0f27dfee64c946039739467b073cf60d923a12c4f96d1c7da6,
→˓

→˓6dc585319e4cf7d73ede73819c6966ea4bed74aadbbcba1bbb777132f63d355965c3502bed7a04425d99cdcfb7694a1c133079e6d9b0ab080e3b874882b95ff4
→˓# new node
]
Get the current block number of group2
$ [group:2]> getBlockNumber
2

#... Send transaction to group2
Deploy the HelloWorld contract and output contract address. If the contract
→˓fails to deploy, please check the consensus status of group2
$ [group:2] deploy HelloWorld
contract address:0xdfdd3ada340d7346c40254600ae4bb7a6cd8e660

Get the current block number of group2, it increases to 3. If not, please check
→˓the consensus status of group2
$ [group:2]> getBlockNumber
3

(continues on next page)

70 Chapter 6. Manual (Revision in progress)

FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

Exit the console
$ [group:2]> exit

Check the block generation status of the new node through log

Switch to the node directory
cd ~/fisco/nodes/127.0.0.1
Check the consensus status of the node(Ctrl+c returns the command line)
$ tail -f node2/log/* | grep "g:2.*++"
info|2019-02-11 18:41:31.625599| [g:2][p:520][CONSENSUS][SEALER]++++++++Generating
→˓seal on,blkNum=4,tx=0,nodeIdx=1,hash=c8a1ed9c...
......Other outputs are omitted here......

Check the block generation status of node2 and group2: new block generated
$ cat node2/log/* | grep "g:2.*Report"
info|2019-02-11 18:53:20.708366| [g:2][p:520][CONSENSUS][PBFT]^^^^^Report:,num=3,
→˓idx=3,hash=80c98d31...,next=10,tx=1,nodeIdx=1
node2 also reports a block with block number 3, indicating that node2 has joined
→˓group2.

Stop the node

Back to the node directory && stop the node
$ cd ~/fisco/nodes/127.0.0.1 && bash stop_all.sh

6.7.4 Parallel multi-group networking topology

Deploying parallel multi-group networking blockchain is similar with deploying star networking blockchain. Tak-
ing a four-node two-group parallel multi-group blockchain as an example:

• group 1: includs 4 nodes with the same IP 127.0.0.1;

• group 2: includs 4 nodes with the same IP 127.0.0.1.

In a real application scenario, it is not recommended to deploy multiple nodes on the same machine. It is rec-
ommended to select the number of deployed nodes according to the machine load. To demonstrate the parallel
multi-group expansion process, only group1 is created here first. In a parallel multi-group scenario, node join and
exit group operations are similar to star networking topology.

Important:

• In a real application scenario, it is not recommended to deploy multiple nodes the same machine, It is
recommended to determine the number of deployed nodes according to the machine load

• To demonstrate the parallel multi-group expansion process, only group1 is created here first

• In a parallel multi-group scenario, the operations of node joining into a group or leaving from a group are
similar to star networking blockchain.

Build blockchain with a single group and 4 nodes

Generate a single-group four-node blockchain node configuration folder with the build_chain.sh
script

6.7. Deploy Multi-Group Blockchain System 71

FISCO BCOS EN Documentation, Release v2.2.0

$ mkdir -p ~/fisco && cd ~/fisco
Download build_chain.sh script
$ curl -LO https://github.com/FISCO-BCOS/FISCO-BCOS/releases/download/v2.2.0/build_
→˓chain.sh && chmod u+x build_chain.sh
#Build a local single-group four-node blockchain (in a production environment, it
→˓is recommended that each node be deployed on a different physical machine)
$ bash build_chain.sh -l "127.0.0.1:4" -o multi_nodes -p 20000,20100,7545
Generating CA key...
==
Generating keys ...
Processing IP:127.0.0.1 Total:4 Agency:agency Groups:1
==
Generating configurations...
Processing IP:127.0.0.1 Total:4 Agency:agency Groups:1
==
[INFO] FISCO-BCOS Path : bin/fisco-bcos
[INFO] Start Port : 20000 20100 7545
[INFO] Server IP : 127.0.0.1:4
[INFO] State Type : storage
[INFO] RPC listen IP : 127.0.0.1
[INFO] Output Dir : /home/ubuntu16/fisco/multi_nodes
[INFO] CA Key Path : /home/ubuntu16/fisco/multi_nodes/cert/ca.key
==
[INFO] All completed. Files in /home/ubuntu16/fisco/multi_nodes

Start all nodes

Switch to the node directory
$ cd ~/fisco/multi_nodes/127.0.0.1
$ bash start_all.sh

Check process
$ ps aux | grep fisco-bcos
ubuntu16 55028 0.9 0.0 986384 6624 pts/2 Sl 20:59 0:00 /home/
→˓ubuntu16/fisco/multi_nodes/127.0.0.1/node0/../fisco-bcos -c config.ini
ubuntu16 55034 0.8 0.0 986104 6872 pts/2 Sl 20:59 0:00 /home/
→˓ubuntu16/fisco/multi_nodes/127.0.0.1/node1/../fisco-bcos -c config.ini
ubuntu16 55041 0.8 0.0 986384 6584 pts/2 Sl 20:59 0:00 /home/
→˓ubuntu16/fisco/multi_nodes/127.0.0.1/node2/../fisco-bcos -c config.ini
ubuntu16 55047 0.8 0.0 986396 6656 pts/2 Sl 20:59 0:00 /home/
→˓ubuntu16/fisco/multi_nodes/127.0.0.1/node3/../fisco-bcos -c config.ini

Check consensus status of nodes

Check consensus status of node0(Ctrl+c returns to the command line)
$ tail -f node0/log/* | grep "g:1.*++"
info|2019-02-11 20:59:52.065958| [g:1][p:264][CONSENSUS][SEALER]++++++++Generating
→˓seal on,blkNum=1,tx=0,nodeIdx=2,hash=da72649e...

Check consensus status of node1
$ tail -f node1/log/* | grep "g:1.*++"
info|2019-02-11 20:59:54.070297| [g:1][p:264][CONSENSUS][SEALER]++++++++Generating
→˓seal on,blkNum=1,tx=0,nodeIdx=0,hash=11c9354d...

Check consensus status of node2
$ tail -f node2/log/* | grep "g:1.*++"
info|2019-02-11 20:59:55.073124| [g:1][p:264][CONSENSUS][SEALER]++++++++Generating
→˓seal on,blkNum=1,tx=0,nodeIdx=1,hash=b65cbac8...

Check consensus status of node3
$ tail -f node3/log/* | grep "g:1.*++"
info|2019-02-11 20:59:53.067702| [g:1][p:264][CONSENSUS][SEALER]++++++++Generating
→˓seal on,blkNum=1,tx=0,nodeIdx=3,hash=0467e5c4... (continues on next page)

72 Chapter 6. Manual (Revision in progress)

FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

Add group2 to the blockchain

The genesis configuration files in each group of parallel multi-group networking blockchain are almost the
same, except group ID [group].id, which is the group number.

Switch to the node directory
$ cd ~/fisco/multi_nodes/127.0.0.1

Copy the configuration of group 1
$ cp node0/conf/group.1.genesis group.2.genesis

Modify group ID
$ sed -i "s/id=1/id=2/g" group.2.genesis
$ cat group.2.genesis | grep "id"
Have modified to id=2

Copy the configuration to each node
$ cp node0/conf/group.2.genesis node1/conf/group.2.genesis
$ cp node0/conf/group.2.genesis node2/conf/group.2.genesis
$ cp node0/conf/group.2.genesis node3/conf/group.2.genesis

Restart node
$ bash stop_all.sh
$ bash start_all.sh

Check consensus status of the group

Check the consensus status of node0 group2
$ tail -f node0/log/* | grep "g:2.*++"
info|2019-02-11 21:13:28.541596| [g:2][p:520][CONSENSUS][SEALER]++++++++Generating
→˓seal on,blkNum=1,tx=0,nodeIdx=2,hash=f3562664...

Check the consensus status of node1 group2
$ tail -f node1/log/* | grep "g:2.*++"
info|2019-02-11 21:13:30.546011| [g:2][p:520][CONSENSUS][SEALER]++++++++Generating
→˓seal on,blkNum=1,tx=0,nodeIdx=0,hash=4b17e74f...

Check the consensus status of node2 group2
$ tail -f node2/log/* | grep "g:2.*++"
info|2019-02-11 21:13:59.653615| [g:2][p:520][CONSENSUS][SEALER]++++++++Generating
→˓seal on,blkNum=1,tx=0,nodeIdx=1,hash=90cbd225...

Check the consensus status of node3 group2
$ tail -f node3/log/* | grep "g:2.*++"
info|2019-02-11 21:14:01.657428| [g:2][p:520][CONSENSUS][SEALER]++++++++Generating
→˓seal on,blkNum=1,tx=0,nodeIdx=3,hash=d7dcb462...

Send transactions to groups

Download console

If you have never downloaded the console, please do the following to download
→˓the console, otherwise copy the console to the ~/fisco directory:
$ cd ~/fisco

(continues on next page)

6.7. Deploy Multi-Group Blockchain System 73

FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

Download console
$ bash <(curl -S https://raw.githubusercontent.com/FISCO-BCOS/console/master/tools/
→˓download_console.sh)

Configuration console

Get channel_port
$ grep "channel_listen_port" multi_nodes/127.0.0.1/node0/config.ini
multi_nodes/127.0.0.1/node0/config.ini: channel_listen_port=20100

Switch to console subdirectory
$ cd console
Copy node certificate
$ cp ~/fisco/multi_nodes/127.0.0.1/sdk/* conf

The configuration of the console configuration file conf/applicationContext.xml is created as fol-
lows. Two groups (group1 and group2) are configured on node0 (127.0.0.1:20100):

cat > ./conf/applicationContext.xml << EOF
<?xml version="1.0" encoding="UTF-8" ?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:p="http://

→˓www.springframework.org/schema/p"
xmlns:tx="http://www.springframework.org/schema/tx" xmlns:aop="http://

→˓www.springframework.org/schema/aop"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/tx

http://www.springframework.org/schema/tx/spring-tx-2.5.xsd
http://www.springframework.org/schema/aop

http://www.springframework.org/schema/aop/spring-aop-2.5.xsd">

<bean id="encryptType" class="org.fisco.bcos.web3j.crypto.EncryptType">
<constructor-arg value="0"/> <!-- 0:standard 1:guomi -->

</bean>

<bean id="groupChannelConnectionsConfig" class="org.fisco.bcos.channel.
→˓handler.GroupChannelConnectionsConfig">

<property name="allChannelConnections">
<list>

<bean id="group1" class="org.fisco.bcos.channel.handler.
→˓ChannelConnections">

<property name="groupId" value="1" />
<property name="connectionsStr">
<list>
<value>127.0.0.1:20100</value>
</list>
</property>

</bean>
<bean id="group2" class="org.fisco.bcos.channel.handler.

→˓ChannelConnections">
<property name="groupId" value="2" />

<property name="connectionsStr">
<list>
<value>127.0.0.1:20100</value>
</list>
</property>

</bean>
</list>

(continues on next page)

74 Chapter 6. Manual (Revision in progress)

FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

</property>
</bean>

<bean id="channelService" class="org.fisco.bcos.channel.client.Service"
→˓depends-on="groupChannelConnectionsConfig">

<property name="groupId" value="1" />
<property name="orgID" value="fisco" />
<property name="allChannelConnections" ref=

→˓"groupChannelConnectionsConfig"></property>
</bean>

</beans>
EOF

Send transactions to groups via console

... Start console ...
$ bash start.sh
The following information output indicates that the console is successfully
→˓started. If the startup fails, check whether the certificate configuration and
→˓the channel listen port configuration are correct.
===
Welcome to FISCO BCOS console(1.0.3)!
Type 'help' or 'h' for help. Type 'quit' or 'q' to quit console.
________ ______ ______ ______ ______ _______ ______ ______ ______

| | \/ \ / \ / \ | \ / \ / \ /
→˓\
| $$$$$$$$\$$$$$| $$$$$$| $$$$$$| $$$$$$\ | $$$$$$$| $$$$$$| $$$$$$| $$$$$
→˓$\
| $$__ | $$ | $$___\$| $$ \$| $$ | $$ | $$__/ $| $$ \$| $$ | $| $$___\
→˓$$
| $$ \ | $$ \$$ \| $$ | $$ | $$ | $$ $| $$ | $$ | $$\$$
→˓\
| $$$$$ | $$ _\$$$$$$| $$ __| $$ | $$ | $$$$$$$| $$ __| $$ | $$_\$$$$$
→˓$\
| $$ _| $$_| __| $| $$__/ | $$__/ $$ | $$__/ $| $$__/ | $$__/ $| __|
→˓$$
| $$ | $$ \\$$ $$\$$ $$\$$ $$ | $$ $$\$$ $$\$$ $$\$$
→˓$$
\$$ \$$$$$$ \$$$$$$ \$$$$$$ \$$$$$$ \$$$$$$$ \$$$$$$ \$$$$$$ \$$$$$
→˓$

===
... Send transaction to group 1...
Get the current block number
$ [group:1]> getBlockNumber
0
Deploy the HelloWorld contract to group1. If the deployment fails, check whether
→˓the consensus status of group1 is normal
$ [group:1]> deploy HelloWorld
contract address:0x8c17cf316c1063ab6c89df875e96c9f0f5b2f744
Get the current block number. If the block number is not increased, please check
→˓if the group1 is normal
$ [group:1]> getBlockNumber
1

... send transaction to group 2...
Switch to group2
$ [group:1]> switch 2
Switched to group 2.
Get the current block number
$ [group:2]> getBlockNumber

(continues on next page)

6.7. Deploy Multi-Group Blockchain System 75

FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

0
Deploy HelloWorld contract to group2
$ [group:2]> deploy HelloWorld
contract address:0x8c17cf316c1063ab6c89df875e96c9f0f5b2f744
Get the current block number. If the block number is not increased, please check
→˓if the group1 is normal
$ [group:2]> getBlockNumber
1
Exit console
$[group:2]> exit

Check block generation status of nodes through log

Switch to the node directory
$ cd ~/fisco/multi_nodes/127.0.0.1/

Check block generation status of group1, and to see that the block with block
→˓number of 1 belonging to group1 is reported.
$ cat node0/log/* | grep "g:1.*Report"
info|2019-02-11 21:14:57.216548| [g:1][p:264][CONSENSUS][PBFT]^^^^^Report:,num=1,
→˓sealerIdx=3,hash=be961c98...,next=2,tx=1,nodeIdx=2

Check block generation status of group2, and to see that the block with block
→˓number of 1 belonging to group2 is reported.
$ cat node0/log/* | grep "g:2.*Report"
info|2019-02-11 21:15:25.310565| [g:2][p:520][CONSENSUS][PBFT]^^^^^Report:,num=1,
→˓sealerIdx=3,hash=5d006230...,next=2,tx=1,nodeIdx=2

Stop nodes

Back to nodes folder && stop the node
$ cd ~/fisco/multi_nodes/127.0.0.1 && bash stop_all.sh

6.8 Console

Console is an important interactive client tool of FISCO BCOS 2.0. It establishes a connection with blockchain
node through Web3SDK to request read and write access for blockchain node data. Console has a wealth of
commands, including blockchain status inquiry, blockchain nodes management, contracts deployment and calling.
In addition, console provides a contract compilation tool that allows users to easily and quickly compile Solidity
contract files into Java contract files.

6.8.1 Console command

Console command consists of two parts, the instructions and the parameters related to the instruction:

• Instruction: instruction is an executed operation command, including blockchain status inquiry and con-
tracts deployment and calling. And some of the instructions call the JSON-RPC interface, so they have
same name as the JSON-RPC interface. Use suggestions: instructions can be completed using the tab
key, and support for displaying historical input commands by pressing the up and down keys.

• Parameters related to the instruction: parameters required by instruction call interface. Instructions to
parameters and parameters to parameters are separated by spaces. The parameters name same as JSON-RPC
interface and the explanation of getting information field can be referred to JSON-RPC API.

76 Chapter 6. Manual (Revision in progress)

https://github.com/FISCO-BCOS/console

FISCO BCOS EN Documentation, Release v2.2.0

6.8.2 Common command link:

Contract related commands

• useCNS to deploy and call contract (recommend)

– deploy contract: deployByCNS

– call contract: callByCNS

– query CNS deployment contract information: queryCNS

• deploy and call contract normally

– deploy contract: deploy

– call contract: call

Other commands

• query block number:getBlockNumber

• query Sealer list:getSealerList

• query the information of transaction receipt: getTransactionReceipt

• switch group: switch

6.8.3 Shortcut key

• Ctrl+A: move cursor to the beginning of line

• Ctrl+D: exit console

• Ctrl+E: move cursor to the end of line

• Ctrl+R: search for the history commands have been entered

• ↑: browse history commands forward

• ↓: browse history commands backward

6.8.4 Console response

When a console command is launched, the console will obtain the result of the command execution and displays
the result at the terminal. The execution result is divided into two categories:

• True: The command returns to the true execution result as a string or json.

• False: The command returns to the false execution result as a string or json.

– When console command call the JSON-RPC interface, error code reference here.

– When console command call the Precompiled Service interface, error code reference here.

6.8.5 Console configuration and operation

Important: Precondition：to build FISCO BCOS blockchain, please refer to Building Chain Script or Enterprise
Tools.

6.8. Console 77

./console.html#deploybycns
./console.html#callbycns
./console.html#querycns
./console.html#deploy
./console.html#call
./console.html#getblocknumber
./console.html#getsealerlist
./console.html#gettransactionreceipt
./console.html#switch
../design/rpc.html#id6
../sdk/sdk.html#precompiled-service-api
./build_chain.html
../enterprise_tools/index.html
../enterprise_tools/index.html

FISCO BCOS EN Documentation, Release v2.2.0

Get console

$ cd ~ && mkdir fisco && cd fisco
get console
$ bash <(curl -S https://raw.githubusercontent.com/FISCO-BCOS/console/master/tools/
→˓download_console.sh)

The directory structure is as follows:

|-- apps # console jar package directory
| -- console.jar
|-- lib # related dependent jar package directory
|-- conf
| |-- applicationContext-sample.xml # configuration file
| |-- log4j.properties # log configuration file
|-- contracts # directory where contract locates
| -- solidity # directory where solidity contract locates
| -- HelloWorld.sol # normal contract: HelloWorld contract, is deployable
→˓and callable
| -- TableTest.sol # the contracts by using CRUD interface: TableTest
→˓contract, is deployable and callable
| -- Table.sol # Table contract interface required to be introduced by CRUD
→˓contract
| -- console # The file directory of contract abi, bin, java compiled when
→˓console deploys the contract
| -- sdk # The file directory of contract abi, bin, java compiled by
→˓sol2java.sh script
|-- start.sh # console start script
|-- get_account.sh # account generate script
|-- sol2java.sh # development tool script for compiling solidity contract file as
→˓java contract file
|-- replace_solc_jar.sh # a script for replacing the compiling jar package

Configure console

• Blockchain node and certificate configuration:

– To copy the ca.crt, sdk.crt, and sdk.key files in the sdk node directory to the conf directory.

– To rename the applicationContext-sample.xml file in the conf directory to the
applicationContext.xml file. To configure the applicationContext.xml file, where
the remark content is modified according to the blockchain node configuration. **Hint: If the
listen_ip set through chain building is 127.0.0.1 or 0.0.0.0 and the channel_port is 20200, the
applicationContext.xml configuration is not modified. **

<?xml version="1.0" encoding="UTF-8" ?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:p="http://

→˓www.springframework.org/schema/p"
xmlns:tx="http://www.springframework.org/schema/tx" xmlns:aop="http://

→˓www.springframework.org/schema/aop"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/tx

http://www.springframework.org/schema/tx/spring-tx-2.5.xsd
http://www.springframework.org/schema/aop

http://www.springframework.org/schema/aop/spring-aop-2.5.xsd">

<bean id="encryptType" class="org.fisco.bcos.web3j.crypto.EncryptType">
(continues on next page)

78 Chapter 6. Manual (Revision in progress)

FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

<constructor-arg value="0"/> <!-- 0:standard 1:guomi -->
</bean>

<bean id="groupChannelConnectionsConfig" class="org.fisco.bcos.channel.
→˓handler.GroupChannelConnectionsConfig">

<property name="allChannelConnections">
<list> <!-- each group need to configure a bean -->

<bean id="group1" class="org.fisco.bcos.channel.
→˓handler.ChannelConnections">

<property name="groupId" value="1" /> <!--
→˓groupID -->

<property name="connectionsStr">
<list>

<value>127.0.0.1:20200</
→˓value> <!-- IP:channel_port -->

</list>
</property>

</bean>
</list>

</property>
</bean>

<bean id="channelService" class="org.fisco.bcos.channel.client.Service"
→˓depends-on="groupChannelConnectionsConfig">

<property name="groupId" value="1" /> <!-- to connect to the group
→˓with ID 1 -->

<property name="orgID" value="fisco" />
<property name="allChannelConnections" ref=

→˓"groupChannelConnectionsConfig"></property>
</bean>

</beans>

Configuration detail reference here.

Important: Console configuration instructions

• If the console is configured correctly, but when it is launched on Cent0S system, the following error occurs:

Failed to connect to the node. Please check the node status and the console configuration.

It is because the JDK version that comes with the CentOS system is used (it will cause the console and
blockchain node’s authentication to fail). Please download Java 8 version or above from OpenJDK official
website or Oracle official website and install (specific installation steps refer to Appendix). To launch the
console after installation.

• When the console configuration file configures multiple node connections in a group, some nodes in the
group may leave the group during operation. Therefore, it shows a norm which is when the console is
polling, the return information may be inconsistent. It is recommended to configure a node or ensure that
the configured nodes are always in the group when using the console, so that the inquired information in the
group will keep consistent during the synchronization time.

Configure OSCCA-approved cryptography console

• Blockchain node and certificate configuration:

– To copy the ca.crt, sdk.crt, and sdk.key files in the sdk node directory to the conf directory.

– To rename the applicationContext-sample.xml file in the conf directory to the
applicationContext.xml file. To configure the applicationContext.xml file, where

6.8. Console 79

../sdk/sdk.html#spring
https://jdk.java.net/java-se-ri/8
https://jdk.java.net/java-se-ri/8
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
./console.html#java

FISCO BCOS EN Documentation, Release v2.2.0

the remark content is modified according to the blockchain node configuration. **Hint: If the
listen_ip set through chain building is 127.0.0.1 or 0.0.0.0 and the channel_port is 20200, the
applicationContext.xml configuration is not modified. **

• Open OSCCA-approved cryptography switch

<bean id="encryptType" class="org.fisco.bcos.web3j.crypto.EncryptType">
<!-- set encryptType value to 1 -->
<constructor-arg value="1"/> <!-- 0:standard 1:guomi -->

</bean>

• Replace compile Jar package

Download solcJ-all-0.4.25-gm.jar package, and put it console dictionary
$ curl -LO https://github.com/FISCO-BCOS/LargeFiles/raw/master/tools/solcj/solcJ-
→˓all-0.4.25-gm.jar
Replace Jar package.
$ bash replace_solc_jar.sh solcJ-all-0.4.25-gm.jar

Contract compilation tool

Console provides a special compilation contract tool that allows developers to compile Solidity contract files
into Java contract files. Two steps for using the tool:

• To place the Solidity contract file in the contracts/solidity directory.

• Complete the task of compiling contract by running the sol2java.sh script (requires specifying a
java package name). For example, there are HelloWorld.sol, TableTest.sol, and Table.sol
contracts in the contracts/solidity directory, and we specify the package name as org.com.
fisco. The command is as follows:

$ cd ~/fisco/console
$./sol2java.sh org.com.fisco

After running successfully, the directories of Java, ABI and bin will be generated in the console/contracts/
sdk directory as shown below.

```bash
|-- abi # to compile the generated abi directory and to store the abi file
→˓compiled by solidity contract
| |-- HelloWorld.abi
| |-- Table.abi
| |-- TableTest.abi
|-- bin # to compile the generated bin directory and to store the bin file
→˓compiled by solidity contract
| |-- HelloWorld.bin
| |-- Table.bin
| |-- TableTest.bin
|-- java # to store compiled package path and Java contract file
| |-- org
| |-- com
| |-- fisco
| |-- HelloWorld.java # the target Java file which is compiled
→˓successfully
| |-- Table.java # the system CRUD contract interface Java file
→˓which is compiled successfully
| |-- TableTest.java # the TableTest Java file which is compiled
→˓successfully
```

In the java directory, org/com/fisco/ package path directory is generated. In the package path direc-
tory, the java contract files HelloWorld.java, TableTest.java and Table.java will be generated.

80 Chapter 6. Manual (Revision in progress)

FISCO BCOS EN Documentation, Release v2.2.0

HelloWorld.java and TableTest.java are the java contract files required by the java application.

**Note: ** The downloaded console contains solcJ-all-0.4.25.jar in the console/lib directory,
so it supports the 0.4 version of the contract compilation. If you are using a 0.5 version contract com-
piler or a national cryptography contract compiler, please download the relevant contract compiler jar pack-
age, and replace solcJ-all-0.4.25.jar in the console/lib directory. It can be replaced by the ./
replace_solc_jar.sh script. To specify the jar package path, the command is as follows:

To download solcJ-all-0.5.2.jar and to place in console directory, the example
→˓usage is as follows

$./replace_solc_jar.sh solcJ-all-0.5.2.jar

Download contract compilation jar package

0.4 version contract compilation jar package

$ curl -LO https://github.com/FISCO-BCOS/LargeFiles/raw/master/tools/solcj/solcJ-
→˓all-0.4.25.jar

0.5 version contract compilation jar package

$ curl -LO https://github.com/FISCO-BCOS/LargeFiles/raw/master/tools/solcj/solcJ-
→˓all-0.5.2.jar

National cryptography 0.4 version contract compilation jar package

$ curl -LO https://github.com/FISCO-BCOS/LargeFiles/raw/master/tools/solcj/solcJ-
→˓all-0.4.25-gm.jar

National cryptography 0.5 version contract compilation jar package

$ curl -LO https://github.com/FISCO-BCOS/LargeFiles/raw/master/tools/solcj/solcJ-
→˓all-0.5.2-gm.jar

Launch console

Start the console while the node is running:

$./start.sh
To output the following information to indicate successful launch
===
Welcome to FISCO BCOS console(1.0.3)!
Type 'help' or 'h' for help. Type 'quit' or 'q' to quit console.
________ ______ ______ ______ ______ _______ ______ ______ ______

| | \/ \ / \ / \ | \ / \ / \ /
→˓\
| $$$$$$$$\$$$$$| $$$$$$| $$$$$$| $$$$$$\ | $$$$$$$| $$$$$$| $$$$$$| $$$$$
→˓$\
| $$__ | $$ | $$___\$| $$ \$| $$ | $$ | $$__/ $| $$ \$| $$ | $| $$___\
→˓$$
| $$ \ | $$ \$$ \| $$ | $$ | $$ | $$ $| $$ | $$ | $$\$$
→˓\
| $$$$$ | $$ _\$$$$$$| $$ __| $$ | $$ | $$$$$$$| $$ __| $$ | $$_\$$$$$
→˓$\
| $$ _| $$_| __| $| $$__/ | $$__/ $$ | $$__/ $| $$__/ | $$__/ $| __|
→˓$$
| $$ | $$ \\$$ $$\$$ $$\$$ $$ | $$ $$\$$ $$\$$ $$\$$
→˓$$

(continues on next page)

6.8. Console 81

FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

\$$ \$$$$$$ \$$$$$$ \$$$$$$ \$$$$$$ \$$$$$$$ \$$$$$$ \$$$$$$ \$$$$$
→˓$

===

Launch script description

To view the current console version:

./start.sh --version
console version: 1.0.3

Account using method

Console loads private key

The console provides the account generation script get_account.sh (for the script tutorial, please refer to Account
Management Document. The generated account file is in the accounts directory, and the account file loaded by
console must be placed in the directory.

The console startup methods are as follows:

./start.sh

./start.sh groupID

./start.sh groupID -pem pemName

./start.sh groupID -p12 p12Name

Default start

The console randomly generates an account that is started with the group number specified in the console config-
uration file.

./start.sh

Specify group number to start

The console randomly generates an account that is started with the group number specified on the command line.

./start.sh 2

• Note: The specified group needs to configure ‘bean’ in the console configuration file.

Start with PEM format private key file

• Start with the account of the specified pem file, enter the parameters: group number, -pem, and pem file
path

./start.sh 1 -pem accounts/0xebb824a1122e587b17701ed2e512d8638dfb9c88.pem

82 Chapter 6. Manual (Revision in progress)

FISCO BCOS EN Documentation, Release v2.2.0

Start with PKCS12 format private key file

• Start with the account of the specified p12 file, enter the parameters: group number, -p12, and p12 file path

./start.sh 1 -p12 accounts/0x5ef4df1b156bc9f077ee992a283c2dbb0bf045c0.p12
Enter Export Password:

6.8.6 Console command

help

Enter help or h to see all the commands on the console.

[group:1]> help

→˓--
addObserver Add an observer node.
addSealer Add a sealer node.
call Call a contract by a function and
→˓parameters.
callByCNS Call a contract by a function and
→˓parameters by CNS.
deploy Deploy a contract on blockchain.
deployByCNS Deploy a contract on blockchain by CNS.
desc Description table information.
exit Quit console.
getBlockByHash Query information about a block by hash.
getBlockByNumber Query information about a block by block
→˓number.
getBlockHashByNumber Query block hash by block number.
getBlockNumber Query the number of most recent block.
getCode Query code at a given address.
getConsensusStatus Query consensus status.
getDeployLog Query the log of deployed contracts.
getGroupList Query group list.
getGroupPeers Query nodeId list for sealer and observer
→˓nodes.
getNodeIDList Query nodeId list for all connected nodes.
getNodeVersion Query the current node version.
getObserverList Query nodeId list for observer nodes.
getPbftView Query the pbft view of node.
getPeers Query peers currently connected to the
→˓client.
getPendingTransactions Query pending transactions.
getPendingTxSize Query pending transactions size.
getSealerList Query nodeId list for sealer nodes.
getSyncStatus Query sync status.
getSystemConfigByKey Query a system config value by key.
getTotalTransactionCount Query total transaction count.
getTransactionByBlockHashAndIndex Query information about a transaction by
→˓block hash and transaction index position.
getTransactionByBlockNumberAndIndex Query information about a transaction by
→˓block number and transaction index position.
getTransactionByHash Query information about a transaction
→˓requested by transaction hash.
getTransactionReceipt Query the receipt of a transaction by
→˓transaction hash.
grantCNSManager Grant permission for CNS by address.
grantDeployAndCreateManager Grant permission for deploy contract and
→˓create user table by address.

(continues on next page)

6.8. Console 83

FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

grantNodeManager Grant permission for node configuration
→˓by address.
grantPermissionManager Grant permission for permission
→˓configuration by address.
grantSysConfigManager Grant permission for system configuration
→˓by address.
grantUserTableManager Grant permission for user table by table
→˓name and address.
help(h) Provide help information.
listCNSManager Query permission information for CNS.
listDeployAndCreateManager Query permission information for deploy
→˓contract and create user table.
listNodeManager Query permission information for node
→˓configuration.
listPermissionManager Query permission information for
→˓permission configuration.
listSysConfigManager Query permission information for system
→˓configuration.
listUserTableManager Query permission for user table
→˓information.
queryCNS Query CNS information by contract name
→˓and contract version.
quit(q) Quit console.
removeNode Remove a node.
revokeCNSManager Revoke permission for CNS by address.
revokeDeployAndCreateManager Revoke permission for deploy contract and
→˓create user table by address.
revokeNodeManager Revoke permission for node configuration
→˓by address.
revokePermissionManager Revoke permission for permission
→˓configuration by address.
revokeSysConfigManager Revoke permission for system
→˓configuration by address.
revokeUserTableManager Revoke permission for user table by table
→˓name and address.
setSystemConfigByKey Set a system config.
switch(s) Switch to a specific group by group ID.
[create sql] Create table by sql.
[delete sql] Remove records by sql.
[insert sql] Insert records by sql.
[select sql] Select records by sql.
[update sql] Update records by sql.

→˓--

**Note: **

• help shows the meaning of each command: command and command description

• for instructions on how to use specific commands, enter the command -h or –help to view them. E.g:

[group:1]> getBlockByNumber -h
Query information about a block by block number.
Usage: getBlockByNumber blockNumber [boolean]
blockNumber -- Integer of a block number, from 0 to 2147483647.
boolean -- (optional) If true it returns the full transaction objects, if false
→˓only the hashes of the transactions.

84 Chapter 6. Manual (Revision in progress)

FISCO BCOS EN Documentation, Release v2.2.0

switch

To run switch or s to switch to the specified group. The group number is displayed in front of the command
prompt.

[group:1]> switch 2
Switched to group 2.

[group:2]>

**Note: ** For the group that needs to be switched, make sure that the information of the group is configured in
applicationContext.xml (the initial state of this configuration file only provides the group 1 configuration)
in the console/conf directory, the configured node ID and port in the group are correct, and the node is running
normally.

getBlockNumber

To run getBlockNumber to view block number.

[group:1]> getBlockNumber
90

getSealerList

To run getSealerList to view the list of consensus nodes.

[group:1]> getSealerList
[

→˓0c0bbd25152d40969d3d3cee3431fa28287e07cff2330df3258782d3008b876d146ddab97eab42796495bfbb281591febc2a0069dcc7dfe88c8831801c5b5801,
→˓

→˓10b3a2d4b775ec7f3c2c9e8dc97fa52beb8caab9c34d026db9b95a72ac1d1c1ad551c67c2b7fdc34177857eada75836e69016d1f356c676a6e8b15c45fc9bc34,
→˓

→˓622af37b2bd29c60ae8f15d467b67c0a7fe5eb3e5c63fdc27a0ee8066707a25afa3aa0eb5a3b802d3a8e5e26de9d5af33806664554241a3de9385d3b448bcd73
]

getObserverList

To run getSealerList to view the list of observer nodes.

[group:1]> getObserverList
[

→˓037c255c06161711b6234b8c0960a6979ef039374ccc8b723afea2107cba3432dbbc837a714b7da20111f74d5a24e91925c773a72158fa066f586055379a1772
]

getNodeIDList

To run getNodeIDList to view the nodes and the list of nodeIds connected to p2p nodes.

[group:1]> getNodeIDList
[

→˓41285429582cbfe6eed501806391d2825894b3696f801e945176c7eb2379a1ecf03b36b027d72f480e89d15bacd43462d87efd09fb0549e0897f850f9eca82ba,
→˓

(continues on next page)

6.8. Console 85

FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

→˓87774114e4a496c68f2482b30d221fa2f7b5278876da72f3d0a75695b81e2591c1939fc0d3fadb15cc359c997bafc9ea6fc37345346acaf40b6042b5831c97e1,
→˓

→˓29c34347a190c1ec0c4507c6eed6a5bcd4d7a8f9f54ef26da616e81185c0af11a8cea4eacb74cf6f61820292b24bc5d9e426af24beda06fbd71c217960c0dff0,
→˓

→˓d5b3a9782c6aca271c9642aea391415d8b258e3a6d92082e59cc5b813ca123745440792ae0b29f4962df568f8ad58b75fc7cea495684988e26803c9c5198f3f8
]

getPbftView

To run getPbftView to view the pbft viewgraph.

[group:1]> getPbftView
2730

getConsensusStatus

To run getConsensusStatus to view the consensus status.

[group:1]> getConsensusStatus
[

{
"id": 1,
"jsonrpc": "2.0",
"result": [
{

"accountType": 1,
"allowFutureBlocks": true,
"cfgErr": false,
"connectedNodes": 3,
"consensusedBlockNumber": 38207,
"currentView": 54477,
"groupId": 1,
"highestblockHash":

→˓"0x19a16e8833e671aa11431de589c866a6442ca6c8548ba40a44f50889cd785069",
"highestblockNumber": 38206,
"leaderFailed": false,
"max_faulty_leader": 1,
"nodeId":

→˓"f72648fe165da17a889bece08ca0e57862cb979c4e3661d6a77bcc2de85cb766af5d299fec8a4337eedd142dca026abc2def632f6e456f80230902f93e2bea13
→˓",

"nodeNum": 4,
"node_index": 3,
"omitEmptyBlock": true,
"protocolId": 65544,
"sealer.0":

→˓"6a99f357ecf8a001e03b68aba66f68398ee08f3ce0f0147e777ec77995369aac470b8c9f0f85f91ebb58a98475764b7ca1be8e37637dd6cb80b3355749636a3d
→˓",

"sealer.1":
→˓"8a453f1328c80b908b2d02ba25adca6341b16b16846d84f903c4f4912728c6aae1050ce4f24cd9c13e010ce922d3393b846f6f5c42f6af59c65a814de733afe4
→˓",

"sealer.2":
→˓"ed483837e73ee1b56073b178f5ac0896fa328fc0ed418ae3e268d9e9109721421ec48d68f28d6525642868b40dd26555c9148dbb8f4334ca071115925132889c
→˓",

"sealer.3":
→˓"f72648fe165da17a889bece08ca0e57862cb979c4e3661d6a77bcc2de85cb766af5d299fec8a4337eedd142dca026abc2def632f6e456f80230902f93e2bea13
→˓",

(continues on next page)

86 Chapter 6. Manual (Revision in progress)

FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

"toView": 54477
},
[

{
"nodeId":

→˓"6a99f357ecf8a001e03b68aba66f68398ee08f3ce0f0147e777ec77995369aac470b8c9f0f85f91ebb58a98475764b7ca1be8e37637dd6cb80b3355749636a3d
→˓",

"view": 54474
},
{

"nodeId":
→˓"8a453f1328c80b908b2d02ba25adca6341b16b16846d84f903c4f4912728c6aae1050ce4f24cd9c13e010ce922d3393b846f6f5c42f6af59c65a814de733afe4
→˓",

"view": 54475
},
{

"nodeId":
→˓"ed483837e73ee1b56073b178f5ac0896fa328fc0ed418ae3e268d9e9109721421ec48d68f28d6525642868b40dd26555c9148dbb8f4334ca071115925132889c
→˓",

"view": 54476
},
{

"nodeId":
→˓"f72648fe165da17a889bece08ca0e57862cb979c4e3661d6a77bcc2de85cb766af5d299fec8a4337eedd142dca026abc2def632f6e456f80230902f93e2bea13
→˓",

"view": 54477
}

]
]

}
]

getSyncStatus

To run getSyncStatus to view the synchronization status.

[group:1]> getSyncStatus
{

"blockNumber":5,
"genesisHash":

→˓"0xeccad5274949b9d25996f7a96b89c0ac5c099eb9b72cc00d65bc6ef09f7bd10b",
"isSyncing":false,
"latestHash":

→˓"0xb99703130e24702d3b580111b0cf4e39ff60ac530561dd9eb0678d03d7acce1d",
"nodeId":

→˓"cf93054cf524f51c9fe4e9a76a50218aaa7a2ca6e58f6f5634f9c2884d2e972486c7fe1d244d4b49c6148c1cb524bcc1c99ee838bb9dd77eb42f557687310ebd
→˓",

"peers":[
{

"blockNumber":5,
"genesisHash":

→˓"0xeccad5274949b9d25996f7a96b89c0ac5c099eb9b72cc00d65bc6ef09f7bd10b",
"latestHash":

→˓"0xb99703130e24702d3b580111b0cf4e39ff60ac530561dd9eb0678d03d7acce1d",
"nodeId":

→˓"0471101bcf033cd9e0cbd6eef76c144e6eff90a7a0b1847b5976f8ba32b2516c0528338060a4599fc5e3bafee188bca8ccc529fbd92a760ef57ec9a14e9e4278
→˓"

},
{

"blockNumber":5,
(continues on next page)

6.8. Console 87

FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

"genesisHash":
→˓"0xeccad5274949b9d25996f7a96b89c0ac5c099eb9b72cc00d65bc6ef09f7bd10b",

"latestHash":
→˓"0xb99703130e24702d3b580111b0cf4e39ff60ac530561dd9eb0678d03d7acce1d",

"nodeId":
→˓"2b08375e6f876241b2a1d495cd560bd8e43265f57dc9ed07254616ea88e371dfa6d40d9a702eadfd5e025180f9d966a67f861da214dd36237b58d72aaec2e108
→˓"

},
{

"blockNumber":5,
"genesisHash":

→˓"0xeccad5274949b9d25996f7a96b89c0ac5c099eb9b72cc00d65bc6ef09f7bd10b",
"latestHash":

→˓"0xb99703130e24702d3b580111b0cf4e39ff60ac530561dd9eb0678d03d7acce1d",
"nodeId":

→˓"ed1c85b815164b31e895d3f4fc0b6e3f0a0622561ec58a10cc8f3757a73621292d88072bf853ac52f0a9a9bbb10a54bdeef03c3a8a42885fe2467b9d13da9dec
→˓"

}
],
"protocolId":265,
"txPoolSize":"0"

}

getNodeVersion

To run getNodeVersion to view the node version.

[group:1]> getNodeVersion
{

"Build Time":"20190107 10:15:23",
"Build Type":"Linux/g++/RelWithDebInfo",
"FISCO-BCOS Version":"2.0.0-rc1",
"Git Branch":"master",
"Git Commit Hash":"be95a6e3e85b621860b101c3baeee8be68f5f450"

}

getPeers

To run getPeers to view the peers of node.

[group:1]> getPeers
[

{
"IPAndPort":"127.0.0.1:50723",
"nodeId":

→˓"8718579e9a6fee647b3d7404d59d66749862aeddef22e6b5abaafe1af6fc128fc33ed5a9a105abddab51e12004c6bfe9083727a1c3a22b067ddbaac3fa349f7f
→˓",

"Topic":[

]
},
{

"IPAndPort":"127.0.0.1:50719",
"nodeId":

→˓"697e81e512cffc55fc9c506104fb888a9ecf4e29eabfef6bb334b0ebb6fc4ef8fab60eb614a0f2be178d0b5993464c7387e2b284235402887cdf640f15cb2b4a
→˓",

"Topic":[

(continues on next page)

88 Chapter 6. Manual (Revision in progress)

FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

]
},
{

"IPAndPort":"127.0.0.1:30304",
"nodeId":

→˓"8fc9661baa057034f10efacfd8be3b7984e2f2e902f83c5c4e0e8a60804341426ace51492ffae087d96c0b968bd5e92fa53ea094ace8d1ba72de6e4515249011
→˓",

"Topic":[

]
}

]

getGroupPeers

To run getGroupPeers to view the list of consensus and observer node of the group where the node is located.

[group:1]> getGroupPeers
[

→˓cf93054cf524f51c9fe4e9a76a50218aaa7a2ca6e58f6f5634f9c2884d2e972486c7fe1d244d4b49c6148c1cb524bcc1c99ee838bb9dd77eb42f557687310ebd,
→˓

→˓ed1c85b815164b31e895d3f4fc0b6e3f0a0622561ec58a10cc8f3757a73621292d88072bf853ac52f0a9a9bbb10a54bdeef03c3a8a42885fe2467b9d13da9dec,
→˓

→˓0471101bcf033cd9e0cbd6eef76c144e6eff90a7a0b1847b5976f8ba32b2516c0528338060a4599fc5e3bafee188bca8ccc529fbd92a760ef57ec9a14e9e4278,
→˓

→˓2b08375e6f876241b2a1d495cd560bd8e43265f57dc9ed07254616ea88e371dfa6d40d9a702eadfd5e025180f9d966a67f861da214dd36237b58d72aaec2e108
]

getGroupList

To run getGroupList to view the list of group:

[group:1]> getGroupList
[1]

getBlockByHash

To run getBlockByHash to view block information according to the block hash. Parameter:

• Block hash: The hash starting with 0x.

• Transaction sign: to set it false by default, the transaction in the block only displays the hash. To set it true,
it displays the transaction specific information.

[group:1]> getBlockByHash
→˓0xf6afbcc3ec9eb4ac2c2829c2607e95ea0fa1be914ca1157436b2d3c5f1842855
{

"extraData":[

],
"gasLimit":"0x0",
"gasUsed":"0x0",
"hash":"0xf6afbcc3ec9eb4ac2c2829c2607e95ea0fa1be914ca1157436b2d3c5f1842855",

(continues on next page)

6.8. Console 89

FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

"logsBloom":
→˓"0x00
→˓",

"number":"0x1",
"parentHash":

→˓"0xeccad5274949b9d25996f7a96b89c0ac5c099eb9b72cc00d65bc6ef09f7bd10b",
"sealer":"0x0",
"sealerList":[

→˓"0471101bcf033cd9e0cbd6eef76c144e6eff90a7a0b1847b5976f8ba32b2516c0528338060a4599fc5e3bafee188bca8ccc529fbd92a760ef57ec9a14e9e4278
→˓",

→˓"2b08375e6f876241b2a1d495cd560bd8e43265f57dc9ed07254616ea88e371dfa6d40d9a702eadfd5e025180f9d966a67f861da214dd36237b58d72aaec2e108
→˓",

→˓"cf93054cf524f51c9fe4e9a76a50218aaa7a2ca6e58f6f5634f9c2884d2e972486c7fe1d244d4b49c6148c1cb524bcc1c99ee838bb9dd77eb42f557687310ebd
→˓",

→˓"ed1c85b815164b31e895d3f4fc0b6e3f0a0622561ec58a10cc8f3757a73621292d88072bf853ac52f0a9a9bbb10a54bdeef03c3a8a42885fe2467b9d13da9dec
→˓"

],
"stateRoot":"0x9711819153f7397ec66a78b02624f70a343b49c60bc2f21a77b977b0ed91cef9

→˓",
"timestamp":"0x1692f119c84",
"transactions":[

"0xa14638d47cc679cf6eeb7f36a6d2a30ea56cb8dcf0938719ff45023a7a8edb5d"
],
"transactionsRoot":

→˓"0x516787f85980a86fd04b0e9ce82a1a75950db866e8cdf543c2cae3e4a51d91b7"
}
[group:1]> getBlockByHash
→˓0xf6afbcc3ec9eb4ac2c2829c2607e95ea0fa1be914ca1157436b2d3c5f1842855 true
{

"extraData":[

],
"gasLimit":"0x0",
"gasUsed":"0x0",
"hash":"0xf6afbcc3ec9eb4ac2c2829c2607e95ea0fa1be914ca1157436b2d3c5f1842855",
"logsBloom":

→˓"0x00
→˓",

"number":"0x1",
"parentHash":

→˓"0xeccad5274949b9d25996f7a96b89c0ac5c099eb9b72cc00d65bc6ef09f7bd10b",
"sealer":"0x0",
"sealerList":[

→˓"0471101bcf033cd9e0cbd6eef76c144e6eff90a7a0b1847b5976f8ba32b2516c0528338060a4599fc5e3bafee188bca8ccc529fbd92a760ef57ec9a14e9e4278
→˓",

→˓"2b08375e6f876241b2a1d495cd560bd8e43265f57dc9ed07254616ea88e371dfa6d40d9a702eadfd5e025180f9d966a67f861da214dd36237b58d72aaec2e108
→˓",

→˓"cf93054cf524f51c9fe4e9a76a50218aaa7a2ca6e58f6f5634f9c2884d2e972486c7fe1d244d4b49c6148c1cb524bcc1c99ee838bb9dd77eb42f557687310ebd
→˓",

→˓"ed1c85b815164b31e895d3f4fc0b6e3f0a0622561ec58a10cc8f3757a73621292d88072bf853ac52f0a9a9bbb10a54bdeef03c3a8a42885fe2467b9d13da9dec
→˓"

],
"stateRoot":"0x9711819153f7397ec66a78b02624f70a343b49c60bc2f21a77b977b0ed91cef9

→˓", (continues on next page)

90 Chapter 6. Manual (Revision in progress)

FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

"timestamp":"0x1692f119c84",
"transactions":[

{
"blockHash":

→˓"0xf6afbcc3ec9eb4ac2c2829c2607e95ea0fa1be914ca1157436b2d3c5f1842855",
"blockNumber":"0x1",
"from":"0x7234c32327795e4e612164e3442cfae0d445b9ad",
"gas":"0x1c9c380",
"gasPrice":"0x1",
"hash":

→˓"0xa14638d47cc679cf6eeb7f36a6d2a30ea56cb8dcf0938719ff45023a7a8edb5d",
"input":

→˓"0x608060405234801561001057600080fd5b506040805190810160405280600d81526020017f48656c6c6f2c20576f726c6421000000000000000000000000000000000000008152506000908051906020019061005c929190610062565b50610107565b828054600181600116156101000203166002900490600052602060002090601f016020900481019282601f106100a357805160ff19168380011785556100d1565b828001600101855582156100d1579182015b828111156100d05782518255916020019190600101906100b5565b5b5090506100de91906100e2565b5090565b61010491905b808211156101005760008160009055506001016100e8565b5090565b90565b6102d7806101166000396000f30060806040526004361061004c576000357c0100900463ffffffff1680634ed3885e146100515780636d4ce63c146100ba575b600080fd5b34801561005d57600080fd5b506100b8600480360381019080803590602001908201803590602001908080601f016020809104026020016040519081016040528093929190818152602001838380828437820191505050505050919291929050505061014a565b005b3480156100c657600080fd5b506100cf610164565b6040518080602001828103825283818151815260200191508051906020019080838360005b8381101561010f5780820151818401526020810190506100f4565b50505050905090810190601f16801561013c5780820380516001836020036101000a031916815260200191505b509250505060405180910390f35b8060009080519060200190610160929190610206565b5050565b606060008054600181600116156101000203166002900480601f0160208091040260200160405190810160405280929190818152602001828054600181600116156101000203166002900480156101fc5780601f106101d1576101008083540402835291602001916101fc565b820191906000526020600020905b8154815290600101906020018083116101df57829003601f168201915b5050505050905090565b828054600181600116156101000203166002900490600052602060002090601f016020900481019282601f1061024757805160ff1916838001178555610275565b82800160010185558215610275579182015b82811115610274578251825591602001919060010190610259565b5b5090506102829190610286565b5090565b6102a891905b808211156102a457600081600090555060010161028c565b5090565b905600a165627a7a72305820fd74886bedbe51a7f3d834162de4d9af7f276c70133e04fd6776b5fbdd3653000029
→˓",

"nonce":
→˓"0x3443a1391c9c29f751e8350304efb310850b8afbaa7738f5e89ddfce79b1d6",

"to":null,
"transactionIndex":"0x0",
"value":"0x0"

}
],
"transactionsRoot":

→˓"0x516787f85980a86fd04b0e9ce82a1a75950db866e8cdf543c2cae3e4a51d91b7"
}

getBlockByNumber

To run getBlockByNumber to view block information according to the block number. Parameter:

• Block number: decimal integer.

• Transaction sign: to set it false by default, the transaction in the block only displays the hash. To set it true,
it displays the transaction specific information.

[group:1]> getBlockByNumber 1
{

"extraData":[

],
"gasLimit":"0x0",
"gasUsed":"0x0",
"hash":"0xf6afbcc3ec9eb4ac2c2829c2607e95ea0fa1be914ca1157436b2d3c5f1842855",
"logsBloom":

→˓"0x00
→˓",

"number":"0x1",
"parentHash":

→˓"0xeccad5274949b9d25996f7a96b89c0ac5c099eb9b72cc00d65bc6ef09f7bd10b",
"sealer":"0x0",
"sealerList":[

→˓"0471101bcf033cd9e0cbd6eef76c144e6eff90a7a0b1847b5976f8ba32b2516c0528338060a4599fc5e3bafee188bca8ccc529fbd92a760ef57ec9a14e9e4278
→˓",

→˓"2b08375e6f876241b2a1d495cd560bd8e43265f57dc9ed07254616ea88e371dfa6d40d9a702eadfd5e025180f9d966a67f861da214dd36237b58d72aaec2e108
→˓",

→˓"cf93054cf524f51c9fe4e9a76a50218aaa7a2ca6e58f6f5634f9c2884d2e972486c7fe1d244d4b49c6148c1cb524bcc1c99ee838bb9dd77eb42f557687310ebd
→˓",

→˓"ed1c85b815164b31e895d3f4fc0b6e3f0a0622561ec58a10cc8f3757a73621292d88072bf853ac52f0a9a9bbb10a54bdeef03c3a8a42885fe2467b9d13da9dec
→˓" (continues on next page)

6.8. Console 91

FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

],
"stateRoot":"0x9711819153f7397ec66a78b02624f70a343b49c60bc2f21a77b977b0ed91cef9

→˓",
"timestamp":"0x1692f119c84",
"transactions":[

"0xa14638d47cc679cf6eeb7f36a6d2a30ea56cb8dcf0938719ff45023a7a8edb5d"
],
"transactionsRoot":

→˓"0x516787f85980a86fd04b0e9ce82a1a75950db866e8cdf543c2cae3e4a51d91b7"
}

getBlockHashByNumber

To run getBlockHashByNumber to get hash through block number Parameter:

• Block number: decimal integer.

[group:1]> getBlockHashByNumber 1
0xf6afbcc3ec9eb4ac2c2829c2607e95ea0fa1be914ca1157436b2d3c5f1842855

getTransactionByHash

To run getTransactionByHash to check the transaction information through transaction hash. Parameter:

• Transaction hash: the transaction hash starting with 0x.

[group:1]> getTransactionByHash
→˓0xed82e2cda98db8614677aba1fa8a795820bd7f68a5919a2f85018ba8c10952ac
{

"blockHash":
→˓"0x77e5b6d799edabaeae654ac5cea9baacd6f8e7ace33531d40c7ed65192de1f02",

"blockNumber":"0x5a",
"from":"0x7a5b31b49c6e944e9e1768785b1bc9a96cea0c17",
"gas":"0x1c9c380",
"gasPrice":"0x1",
"hash":"0xed82e2cda98db8614677aba1fa8a795820bd7f68a5919a2f85018ba8c10952ac

→˓",
"input":

→˓"0x10009562616c696365006a6f726500
→˓",

"nonce":"0x18711fff2ea68dc8b8dce4a3d3845c62a0630766a448bd9453a9127efe6f9e5
→˓",

"to":"0x738eedd873bb9722173194ab990c5b9a6c0beb25",
"transactionIndex":"0x0",
"value":"0x0"

}

getTransactionByBlockHashAndIndex

To run getTransactionByBlockHashAndIndex to inquire transaction information through block hash and transac-
tion index. Parameter:

• Block hash: the transaction hash starting with 0x.

• Transaction index: decimal integer.

92 Chapter 6. Manual (Revision in progress)

FISCO BCOS EN Documentation, Release v2.2.0

[group:1]> getTransactionByBlockHashAndIndex
→˓0x77e5b6d799edabaeae654ac5cea9baacd6f8e7ace33531d40c7ed65192de1f02 0
{

"blockHash":
→˓"0x77e5b6d799edabaeae654ac5cea9baacd6f8e7ace33531d40c7ed65192de1f02",

"blockNumber":"0x5a",
"from":"0x7a5b31b49c6e944e9e1768785b1bc9a96cea0c17",
"gas":"0x1c9c380",
"gasPrice":"0x1",
"hash":"0xed82e2cda98db8614677aba1fa8a795820bd7f68a5919a2f85018ba8c10952ac

→˓",
"input":

→˓"0x10009562616c696365006a6f726500
→˓",

"nonce":"0x18711fff2ea68dc8b8dce4a3d3845c62a0630766a448bd9453a9127efe6f9e5
→˓",

"to":"0x738eedd873bb9722173194ab990c5b9a6c0beb25",
"transactionIndex":"0x0",
"value":"0x0"

}

getTransactionByBlockNumberAndIndex

To run getTransactionByBlockNumberAndIndex to inquire transaction information through block number and
transaction index. Parameter:

• Block number: decimal integer.

• Transaction index: decimal integer.

[group:1]> getTransactionByBlockNumberAndIndex 2 0
{

"blockHash":
→˓"0x77e5b6d799edabaeae654ac5cea9baacd6f8e7ace33531d40c7ed65192de1f02",

"blockNumber":"0x5a",
"from":"0x7a5b31b49c6e944e9e1768785b1bc9a96cea0c17",
"gas":"0x1c9c380",
"gasPrice":"0x1",
"hash":"0xed82e2cda98db8614677aba1fa8a795820bd7f68a5919a2f85018ba8c10952ac

→˓",
"input":

→˓"0x10009562616c696365006a6f726500
→˓",

"nonce":"0x18711fff2ea68dc8b8dce4a3d3845c62a0630766a448bd9453a9127efe6f9e5
→˓",

"to":"0x738eedd873bb9722173194ab990c5b9a6c0beb25",
"transactionIndex":"0x0",
"value":"0x0"

}

getTransactionReceipt

To run getTransactionReceipt to inquire transaction receipt through transaction hash. Parameter:

• Transaction hash: the transaction hash starting with 0x.

• contract name: Optional. The contract name generated by transaction receipt. To use this parameter can
parse and output the event log in the transaction receipt.

• event name: optional. Event Name. To specify this parameter to output the specified event log information.

6.8. Console 93

FISCO BCOS EN Documentation, Release v2.2.0

• event index number: optional. Event index. To specify this parameter to output the event log information of
the specified event index location.

[group:1]> getTransactionReceipt
→˓0x6393c74681f14ca3972575188c2d2c60d7f3fb08623315dbf6820fc9dcc119c1
{

"blockHash":"0x68a1f47ca465acc89edbc24115d1b435cb39fa0def53e8d0ad8090cf1827cafd
→˓",

"blockNumber":"0x5",
"contractAddress":"0x00",
"from":"0xc44e7a8a4ae20d6afaa43221c6120b5e1e9f9a72",
"gasUsed":"0x8be5",
"logs":[

{
"address":"0xd653139b9abffc3fe07573e7bacdfd35210b5576",
"data":

→˓"0x0001",
"topics":[

"0x66f7705280112a4d1145399e0414adc43a2d6974b487710f417edcf7d4a39d71
→˓"

]
}

],
"logsBloom":

→˓"0x000400400000000000000000000001008000000000000000000000000000000000000004004000
→˓",

"output":"0x0001",
"status":"0x0",
"to":"0xd653139b9abffc3fe07573e7bacdfd35210b5576",
"transactionHash":

→˓"0x6393c74681f14ca3972575188c2d2c60d7f3fb08623315dbf6820fc9dcc119c1",
"transactionIndex":"0x0"

}

[group:1]> getTransactionReceipt
→˓0x6393c74681f14ca3972575188c2d2c60d7f3fb08623315dbf6820fc9dcc119c1 TableTest
{

"blockHash":"0x68a1f47ca465acc89edbc24115d1b435cb39fa0def53e8d0ad8090cf1827cafd
→˓",

"blockNumber":"0x5",
"contractAddress":"0x00",
"from":"0xc44e7a8a4ae20d6afaa43221c6120b5e1e9f9a72",
"gasUsed":"0x8be5",
"logs":[

{
"address":"0xd653139b9abffc3fe07573e7bacdfd35210b5576",
"data":

→˓"0x0001",
"topics":[

"0x66f7705280112a4d1145399e0414adc43a2d6974b487710f417edcf7d4a39d71
→˓"

]
}

],
"logsBloom":

→˓"0x000400400000000000000000000001008000000000000000000000000000000000000004004000
→˓",

"output":"0x0001",
"status":"0x0",
"to":"0xd653139b9abffc3fe07573e7bacdfd35210b5576",
"transactionHash":

→˓"0x6393c74681f14ca3972575188c2d2c60d7f3fb08623315dbf6820fc9dcc119c1",

(continues on next page)

94 Chapter 6. Manual (Revision in progress)

FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

"transactionIndex":"0x0"
}

→˓----------
Event logs

→˓----------
InsertResult index: 0
count = 1

→˓----------

[group:1]> getTransactionReceipt
→˓0x6393c74681f14ca3972575188c2d2c60d7f3fb08623315dbf6820fc9dcc119c1 TableTest
→˓InsertResult
{

"blockHash":"0x68a1f47ca465acc89edbc24115d1b435cb39fa0def53e8d0ad8090cf1827cafd
→˓",

"blockNumber":"0x5",
"contractAddress":"0x00",
"from":"0xc44e7a8a4ae20d6afaa43221c6120b5e1e9f9a72",
"gasUsed":"0x8be5",
"logs":[

{
"address":"0xd653139b9abffc3fe07573e7bacdfd35210b5576",
"data":

→˓"0x0001",
"topics":[

"0x66f7705280112a4d1145399e0414adc43a2d6974b487710f417edcf7d4a39d71
→˓"

]
}

],
"logsBloom":

→˓"0x000400400000000000000000000001008000000000000000000000000000000000000004004000
→˓",

"output":"0x0001",
"status":"0x0",
"to":"0xd653139b9abffc3fe07573e7bacdfd35210b5576",
"transactionHash":

→˓"0x6393c74681f14ca3972575188c2d2c60d7f3fb08623315dbf6820fc9dcc119c1",
"transactionIndex":"0x0"

}

→˓----------
Event logs

→˓----------
InsertResult index: 0
count = 1

→˓----------

[group:1]> getTransactionReceipt
→˓0x6393c74681f14ca3972575188c2d2c60d7f3fb08623315dbf6820fc9dcc119c1 TableTest
→˓InsertResult 0
{

"blockHash":"0x68a1f47ca465acc89edbc24115d1b435cb39fa0def53e8d0ad8090cf1827cafd
→˓",

"blockNumber":"0x5",
"contractAddress":"0x00",

(continues on next page)

6.8. Console 95

FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

"from":"0xc44e7a8a4ae20d6afaa43221c6120b5e1e9f9a72",
"gasUsed":"0x8be5",
"logs":[

{
"address":"0xd653139b9abffc3fe07573e7bacdfd35210b5576",
"data":

→˓"0x0001",
"topics":[

"0x66f7705280112a4d1145399e0414adc43a2d6974b487710f417edcf7d4a39d71
→˓"

]
}

],
"logsBloom":

→˓"0x000400400000000000000000000001008000000000000000000000000000000000000004004000
→˓",

"output":"0x0001",
"status":"0x0",
"to":"0xd653139b9abffc3fe07573e7bacdfd35210b5576",
"transactionHash":

→˓"0x6393c74681f14ca3972575188c2d2c60d7f3fb08623315dbf6820fc9dcc119c1",
"transactionIndex":"0x0"

}

→˓----------
Event logs

→˓----------
InsertResult index: 0
count = 1

→˓----------

getPendingTransactions

To run getPendingTransactions to inquire the transactions waiting to be processed.

[group:1]> getPendingTransactions
[]

getPendingTxSize

To run getPendingTxSize to inquire the number of transactions waiting to be processed.

[group:1]> getPendingTxSize
0

getCode

To run getCode to inquire contract code according contract address. Parameter:

• Contract address: The contract address starting with 0x(To deploy contract can get contract address).

[group:1]> getCode 0x97b8c19598fd781aaeb53a1957ef9c8acc59f705
0x60606040526000357c0100900463ffffffff16806366c99139146100465780636d4ce63c14610066575bfe5b341561004e57fe5b610064600480803590602001909190505061008c565b005b341561006e57fe5b61007661028c565b6040518082815260200191505060405180910390f35b8060006001015410806100aa57506002600101548160026001015401105b156100b457610289565b806000600101540360006001018190555080600260010160008282540192505081905550600480548060010182816100ec919061029a565b916000526020600020906004020160005b608060405190810160405280604060405190810160405280600881526020017f3230313730343133008152508152602001600060000160009054906101000a900473ff1673ff168152602001600260000160009054906101000a900473ff1673ff16815260200185815250909190915060008201518160000190805190602001906101ec9291906102cc565b5060208201518160010160006101000a81548173ff021916908373ff16021790555060408201518160020160006101000a81548173ff021916908373ff160217905550606082015181600301555050505b50565b600060026001015490505b90565b8154818355818115116102c7576004028160040283600052602060002091820191016102c6919061034c565b5b505050565b828054600181600116156101000203166002900490600052602060002090601f016020900481019282601f1061030d57805160ff191683800117855561033b565b8280016001018555821561033b579182015b8281111561033a57825182559160200191906001019061031f565b5b50905061034891906103d2565b5090565b6103cf91905b808211156103cb57600060008201600061036c91906103f7565b6001820160006101000a81549073ff02191690556002820160006101000a81549073ff0219169055600382016000905550600401610352565b5090565b90565b6103f491905b808211156103f05760008160009055506001016103d8565b5090565b90565b50805460018160011615610100020316600290046000825580601f1061041d575061043c565b601f01602090049060005260206000209081019061043b91906103d2565b5b505600a165627a7a723058203c1f95b4a803493db0120df571d9f5155734152548a532412f2f9fa2dbe1ac730029

96 Chapter 6. Manual (Revision in progress)

FISCO BCOS EN Documentation, Release v2.2.0

getTotalTransactionCount

To run getTotalTransactionCount to inquire the current block number and the total number of transaction.

[group:1]> getTotalTransactionCount
{

"blockNumber":1,
"txSum":1,
"failedTxSum":0

}

deploy

To run deploy to deploy contract. (By default, HelloWorld contract and TableTest.sol are provided for example)
Parameter:

• Contract name: deployment contract name (can be suffixed with .sol). It can name as either HelloWorld or
HelloWorld.sol.

To deploy HelloWorld contract
[group:1]> deploy HelloWorld.sol
contract address:0xb3c223fc0bf6646959f254ac4e4a7e355b50a344

To deploy TableTest contract
[group:1]> deploy TableTest.sol
contract address:0x3554a56ea2905f366c345bd44fa374757fb4696a

Note:

• For deploying a user-written contract, we just need to place the solidity contract file in the contracts/
solidity/ directory of the console root, and then deploy it. Press the tab key to search for the contract
name in the contracts/solidity directory.

• If the contract need to be deployed refers to other contracts or libraries, the reference format is import ".
/XXX.sol";. The related contracts and libraries are placed in the contracts/solidity/ directory.

• If contract references the library library, the name of library file must start with Lib string to distinguish
between the normal contract and the library file. Library files cannot be deployed and called separately.

• **Because FISCO BCOS has removed the transfer payment logic of Ethereum, the solidity contract does
not support using payable keyword. This keyword will cause the Java contract file converted by solidity
contract to fail at compilation. **

getDeployLog

Run getDeployLog to query the log information of the contract deployed by current console in the group. The log
information includes the time of deployment contract, the group ID, the contract name, and the contract address.
parameter:

• Log number: optional. To return the latest log information according to the expected value entered. When
the actual number is less than the expected value, it returns by the actual number. When the expected value
is not given, it returns by the latest 20 log information by default.

[group:1]> getDeployLog 2

2019-05-26 08:37:03 [group:1] HelloWorld
→˓0xc0ce097a5757e2b6e189aa70c7d55770ace47767
2019-05-26 08:37:45 [group:1] TableTest
→˓0xd653139b9abffc3fe07573e7bacdfd35210b5576

[group:1]> getDeployLog 1

(continues on next page)

6.8. Console 97

FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

2019-05-26 08:37:45 [group:1] TableTest
→˓0xd653139b9abffc3fe07573e7bacdfd35210b5576

Note: If you want to see all the deployment contract log information, please check the deploylog.txt file in
the console directory. The file only stores the log records of the last 10,000 deployment contracts.

call

To run call to call contract. Parameter:

• Contract name: the contract name of the deployment (can be suffixed with .sol).

• Contract address: the address obtained by the deployment contract. The contract address can omit the prefix
0. For example, 0x000ac78 can be abbreviated as 0xac78.

• Contract interface name: the called interface name.

• Parameter: determined by contract interface parameters.

**Parameters are separated by spaces. The string and byte type parameters need to be enclosed in double quotes;
array parameters need to be enclosed in brackets, such as [1,2,3]; array is a string or byte type and needs to be
enclosed in double quotation marks, such as [“alice”, “bob”]. Note that there are no spaces in the array parameters;
boolean types are true or false. **

```text
# To call the get interface of HelloWorld to get the name string
[group:1]> call HelloWorld.sol 0xc0ce097a5757e2b6e189aa70c7d55770ace47767 get
Hello, World!

# To call the set interface of HelloWorld to set the name string
[group:1]> call HelloWorld.sol 0xc0ce097a5757e2b6e189aa70c7d55770ace47767 set
→˓"Hello, FISCO BCOS"
transaction hash:0xa7c7d5ef8d9205ce1b228be1fe90f8ad70eeb6a5d93d3f526f30d8f431cb1e70

# To call the get interface of HelloWorld to get the name string for checking
→˓whether the settings take effect
[group:1]> call HelloWorld.sol 0xc0ce097a5757e2b6e189aa70c7d55770ace47767 get
Hello, FISCO BCOS

# Call the create interface of TableTest to create the user table t_test. The
→˓create interface calls the createResult event, and the event log will output.

# Call the create interface of TableTest to create the user table t_test, the
→˓create interface calls the createResult event, and the event log will output.

# event log consists of the event name, the event log index number, and the event
→˓variable, which is convenient for users to view the status of the variable after
→˓sending transaction. createResult event records the value count which is
→˓returned by the create interface creation table.

[group:1]> call TableTest.sol 0xd653139b9abffc3fe07573e7bacdfd35210b5576 create
transaction hash:0x895980dd6ef37004bb32a7f417daa3b5d0bdb1f16e8a62cc9251e5948c612bb5
-----------------------------------------------------------------------------------
→˓----------
Event logs
-----------------------------------------------------------------------------------
→˓----------
CreateResult index: 0
count = 0
-----------------------------------------------------------------------------------
→˓----------

(continues on next page)

98 Chapter 6. Manual (Revision in progress)



FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

# To call the insert interface of TableTest to insert the record, the fields are
→˓name, item_id, item_name
[group:1]> call TableTest.sol 0xd653139b9abffc3fe07573e7bacdfd35210b5576 insert
→˓"fruit" 1 "apple"
transaction hash:0x6393c74681f14ca3972575188c2d2c60d7f3fb08623315dbf6820fc9dcc119c1
-----------------------------------------------------------------------------------
→˓----------
Event logs
-----------------------------------------------------------------------------------
→˓----------
InsertResult index: 0
count = 1
-----------------------------------------------------------------------------------
→˓----------

# To call TableTest's select interface to inquiry records
[group:1]> call TableTest.sol 0xd653139b9abffc3fe07573e7bacdfd35210b5576 select
→˓"fruit"
[[fruit], [1], [apple]]

Note: TableTest.sol contract codeReference here。

deployByCNS

Run deployByCNS and deploy the contract with CNS. Contracts deployed with CNS can be called directly with
the contract name.

Parameter:

• Contract name: deployable contract name.

• Contract version number: deployable contract version number(the length cannot exceed 40).

# To deploy HellowWorld contract 1.0 version
[group:1]> deployByCNS HelloWorld.sol 1.0
contract address:0x3554a56ea2905f366c345bd44fa374757fb4696a

# To deploy HellowWorld contract 2.0 version
[group:1]> deployByCNS HelloWorld.sol 2.0
contract address:0x07625453fb4a6459cbf14f5aa4d574cae0f17d92

# To deploy TableTest contract
[group:1]> deployByCNS TableTest.sol 1.0
contract address:0x0b33d383e8e93c7c8083963a4ac4a58b214684a8

Note:

• For deploying the contracts compiled by users only needs to place the solidity contract file in the
contracts/solidity/ directory of the console root and to deploy it. Press tab key to search for
the contract name in the contracts/solidity/ directory.

• If the contract to be deployed references other contracts or libraries, the reference format is import "./
XXX.sol";. The related contract and library are placed in the contracts/solidity/ directory.

• **Because FISCO BCOS has removed the transfer payment logic of Ethereum, the solidity contract does
not support using payable keyword. This keyword will cause the Java contract file converted by solidity
contract to fail at compilation. **

6.8. Console 99

smart_contract.html#solidity


FISCO BCOS EN Documentation, Release v2.2.0

queryCNS

Run queryCNS and query the CNS table record information (the mapping of contract name and contract address)
according to the contract name and contract version number (optional parameter).

Parameter:

• Contract name: deployable contract name.

• Contract version number: (optional) deployable contract version number.

[group:1]> queryCNS HelloWorld.sol
-----------------------------------------------------------------------------------
→˓----------
| version | address
→˓ |
| 1.0 |
→˓0x3554a56ea2905f366c345bd44fa374757fb4696a |
-----------------------------------------------------------------------------------
→˓----------

[group:1]> queryCNS HelloWorld 1.0
-----------------------------------------------------------------------------------
→˓----------
| version | address
→˓ |
| 1.0 |
→˓0x3554a56ea2905f366c345bd44fa374757fb4696a |
-----------------------------------------------------------------------------------
→˓----------

callByCNS

To run deployByCNS and deploy the contract with CNS. Parameter:

• Contract name and contract version number: The contract name and contract version number are separated
by colon, such as HelloWorld:1.0 or HelloWorld.sol:1.0. When the contract version number is
omitted like HelloWorld or HelloWorld.sol, the latest version of the contract is called.

• Contract interface name: The called contract interface name.

• Parameter: is determined by the parameter of contract interface. The parameters are separated by spaces,
where the string and byte type parameters need to be enclosed in double quotation marks; the array
parameters need to be enclosed in brackets, such as [1, 2, 3]. The array is a string or byte type with
double quotation marks such as [“alice”, “bob”]; the boolean type is true or false.

# To call the HelloWorld contract 1.0 version to set the name string by the set
→˓interface
[group:1]> callByCNS HelloWorld:1.0 set "Hello,CNS"
transaction hash:0x80bb37cc8de2e25f6a1cdcb6b4a01ab5b5628082f8da4c48ef1bbc1fb1d28b2d

# To call the HelloWorld contract 2.0 version to set the name string by the set
→˓interface
[group:1]> callByCNS HelloWorld:2.0 set "Hello,CNS2"
transaction hash:0x43000d14040f0c67ac080d0179b9499b6885d4a1495d3cfd1a79ffb5f2945f64

# To call the HelloWorld contract 1.0 version to get the name string by the get
→˓interface
[group:1]> callByCNS HelloWorld:1.0 get
Hello,CNS

# To call the HelloWorld contract 2.0 version to get the name string by the get
→˓interface

(continues on next page)

100 Chapter 6. Manual (Revision in progress)



FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

[group:1]> callByCNS HelloWorld get
Hello,CNS2

addSealer

To run addSealer to add the node as a consensus node. Parameter:

• node’s nodeId

[group:1]> addSealer
→˓ea2ca519148cafc3e92c8d9a8572b41ea2f62d0d19e99273ee18cccd34ab50079b4ec82fe5f4ae51bd95dd788811c97153ece8c05eac7a5ae34c96454c4d3123
{

"code":0,
"msg":"success"

}

addObserver

To run addObserver to add the node as an observed node. Parameter:

• node’s nodeId

[group:1]> addObserver
→˓ea2ca519148cafc3e92c8d9a8572b41ea2f62d0d19e99273ee18cccd34ab50079b4ec82fe5f4ae51bd95dd788811c97153ece8c05eac7a5ae34c96454c4d3123
{

"code":0,
"msg":"success"

}

removeNode

To run removeNode to exit the node. The exit node can be added as a consensus node by the addSealer command
or can be added as an observation node by the addObserver command. Parameter:

• node’s nodeId

[group:1]> removeNode
→˓ea2ca519148cafc3e92c8d9a8572b41ea2f62d0d19e99273ee18cccd34ab50079b4ec82fe5f4ae51bd95dd788811c97153ece8c05eac7a5ae34c96454c4d3123
{

"code":0,
"msg":"success"

}

setSystemConfigByKey

To run setSystemConfigByKey to set the system configuration in key-value pairs. The currently system config-
uration supports tx_count_limit and tx_gas_limit. The key name of these two configuration can be
complemented by the tab key:

• tx_count_limit: block maximum number of packaged transactions

• tx_gas_limit: The maximum number of gas allowed to be consumed

Parameters:

• key

• value

6.8. Console 101



FISCO BCOS EN Documentation, Release v2.2.0

[group:1]> setSystemConfigByKey tx_count_limit 100
{

"code":0,
"msg":"success"

}

getSystemConfigByKey

To run getSystemConfigByKe to inquire the value of the system configuration according to the key. Parameter:

• key

[group:1]> getSystemConfigByKey tx_count_limit
100

grantPermissionManager

Run grantPermissionManager to grant the account’s chain administrator privileges. parameter:

• account address

[group:1]> grantPermissionManager 0xc0d0e6ccc0b44c12196266548bec4a3616160e7d
{

"code":0,
"msg":"success"

}

**Note: For an example of the using permission control related commands, refer to Permission Control Manual
Document. **

listPermissionManager

To run listPermissionManager to inquire the list of permission records with administrative privileges.

[group:1]> listPermissionManager
-----------------------------------------------------------------------------------
→˓----------
| address | enable_num
→˓ |
| 0xc0d0e6ccc0b44c12196266548bec4a3616160e7d | 2
→˓ |
-----------------------------------------------------------------------------------
→˓----------

revokePermissionManager

To run revokePermissionManager to revoke the permission management of the external account address. parame-
ter:

• account address

[group:1]> revokePermissionManager 0xc0d0e6ccc0b44c12196266548bec4a3616160e7d
{

"code":0,
"msg":"success"

}

102 Chapter 6. Manual (Revision in progress)



FISCO BCOS EN Documentation, Release v2.2.0

grantUserTableManager

Run grantUserTableManager to grant the account to write to the user table.

parameter:

• table name

• account address

[group:1]> grantUserTableManager t_test 0xc0d0e6ccc0b44c12196266548bec4a3616160e7d
{

"code":0,
"msg":"success"

}

listUserTableManager

Run listUserTableManager to query the account’s table that has writing permission to the user table.

parameter:

• table name

[group:1]> listUserTableManager t_test
-----------------------------------------------------------------------------------
→˓----------
| address | enable_num
→˓ |
| 0xc0d0e6ccc0b44c12196266548bec4a3616160e7d | 2
→˓ |
-----------------------------------------------------------------------------------
→˓----------

revokeUserTableManager

Run revokeUserTableManager to revoke the account’s writing permission from the user table.

parameter:

• table name

• account address

[group:1]> revokeUserTableManager t_test 0xc0d0e6ccc0b44c12196266548bec4a3616160e7d
{

"code":0,
"msg":"success"

}

grantDeployAndCreateManager

Run grantDeployAndCreateManager to grant the account’s permission of deployment contract and user table
creation.

parameter:

• account address

6.8. Console 103



FISCO BCOS EN Documentation, Release v2.2.0

[group:1]> grantDeployAndCreateManager 0xc0d0e6ccc0b44c12196266548bec4a3616160e7d
{

"code":0,
"msg":"success"

}

listDeployAndCreateManager

Run listDeployAndCreateManager to query the account’s permission of deployment contract and user table cre-
ation.

[group:1]> listDeployAndCreateManager
-----------------------------------------------------------------------------------
→˓----------
| address | enable_num
→˓ |
| 0xc0d0e6ccc0b44c12196266548bec4a3616160e7d | 2
→˓ |
-----------------------------------------------------------------------------------
→˓----------

revokeDeployAndCreateManager

Run revokeDeployAndCreateManager to revoke the account’s permission of deployment contract and user table
creation.

parameter:

• account address

[group:1]> revokeDeployAndCreateManager 0xc0d0e6ccc0b44c12196266548bec4a3616160e7d
{

"code":0,
"msg":"success"

}

grantNodeManager

Run grantNodeManager to grant the account’s node management permission.

parameter:

• account address

[group:1]> grantNodeManager 0xc0d0e6ccc0b44c12196266548bec4a3616160e7d
{

"code":0,
"msg":"success"

}

listNodeManager

Run the listNodeManager to query the list of accounts that have node management.

104 Chapter 6. Manual (Revision in progress)



FISCO BCOS EN Documentation, Release v2.2.0

[group:1]> listNodeManager
-----------------------------------------------------------------------------------
→˓----------
| address | enable_num
→˓ |
| 0xc0d0e6ccc0b44c12196266548bec4a3616160e7d | 2
→˓ |
-----------------------------------------------------------------------------------
→˓----------

revokeNodeManager

Run revokeNodeManager to revoke the account’s node management permission.

parameter:

• account address

[group:1]> revokeNodeManager 0xc0d0e6ccc0b44c12196266548bec4a3616160e7d
{

"code":0,
"msg":"success"

}

grantCNSManager

Run grantCNSManager to grant the account’s permission of using CNS. parameter:

• account address

[group:1]> grantCNSManager 0xc0d0e6ccc0b44c12196266548bec4a3616160e7d
{

"code":0,
"msg":"success"

}

listCNSManager

Run listCNSManager to query the list of accounts that have CNS.

[group:1]> listCNSManager
-----------------------------------------------------------------------------------
→˓----------
| address | enable_num
→˓ |
| 0xc0d0e6ccc0b44c12196266548bec4a3616160e7d | 2
→˓ |
-----------------------------------------------------------------------------------
→˓----------

revokeCNSManager

Run revokeCNSManager to revoke the account’s permission of using CNS. parameter:

• account address

6.8. Console 105



FISCO BCOS EN Documentation, Release v2.2.0

[group:1]> revokeCNSManager 0xc0d0e6ccc0b44c12196266548bec4a3616160e7d
{

"code":0,
"msg":"success"

}

grantSysConfigManager

Run grantSysConfigManager to grant the account’s permission of modifying system parameter. parameter:

• account address

[group:1]> grantSysConfigManager 0xc0d0e6ccc0b44c12196266548bec4a3616160e7d
{

"code":0,
"msg":"success"

}

listSysConfigManager

Run listSysConfigManager to query the list of accounts that have modified system parameters.

[group:1]> listSysConfigManager
-----------------------------------------------------------------------------------
→˓----------
| address | enable_num
→˓ |
| 0xc0d0e6ccc0b44c12196266548bec4a3616160e7d | 2
→˓ |
-----------------------------------------------------------------------------------
→˓----------

revokeSysConfigManager

Run revokeSysConfigManager to revoke the account’s permission of modifying system parameter. parameter:

• account address

[group:1]> revokeSysConfigManager 0xc0d0e6ccc0b44c12196266548bec4a3616160e7d
{

"code":0,
"msg":"success"

}

quit

To run quit, q or exit to exit the console.

quit

[create sql]

Run create sql statement to create a user table in mysql statement form.

106 Chapter 6. Manual (Revision in progress)



FISCO BCOS EN Documentation, Release v2.2.0

# Create user table t_demo whose primary key is name and other fields are item_id
→˓and item_name
[group:1]> create table t_demo(name varchar, item_id varchar, item_name varchar,
→˓primary key(name))
Create 't_demo' Ok.

Note:

• The field types for creating table are all string types. Even if other field types of the database are provided,
the field types have to be set according to the string type.

• The primary key field must be specified. For example, to create a t_demo table with the primary key field
as name.

• The primary key of the table has different concept from the primary key in the relational database. Here, the
value of the primary key is not unique, and the primary key value needs to be passed when the blockchain
underlying platform is handling records.

• You can specify the field as the primary key, but the setting fields such as self-incrementing, non-empty,
indexing, etc do not work.

desc

Run desc statement to query the field information of the table in mysql statement form.

# query the field information of the t_demo table. you can view the primary key
→˓name and other field names of the table.

[group:1]> desc t_demo
{

"key":"name",
"valueFields":"item_id,item_name"

}

[insert sql]

Run insert sql statement to insert the record in the mysql statement form.

[group:1]> insert into t_demo (name, item_id, item_name) values (fruit, 1, apple1)
Insert OK, 1 row affected.

Note:

• must insert a record sql statement with the primary key field value of the table.

• The enter values with punctuation, spaces, or strings containing letters starting with a number requires
double quotation marks, and no more double quotation marks are allowed inside.

[select sql]

Run select sql statement to query the record in mysql statement form.

# query the records contain all fields
select * from t_demo where name = fruit
{item_id=1, item_name=apple1, name=fruit}
1 row in set.

# query the records contain the specified fields
[group:1]> select name, item_id, item_name from t_demo where name = fruit
{name=fruit, item_id=1, item_name=apple1}

(continues on next page)

6.8. Console 107



FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

1 row in set.

# insert a new record
[group:1]> insert into t_demo values (fruit, 2, apple2)
Insert OK, 1 row affected.

# use the keyword 'and' to connect multiple query condition
[group:1]> select * from t_demo where name = fruit and item_name = apple2
{item_id=2, item_name=apple2, name=fruit}
1 row in set.

# use limit field to query the first line of records. If the offset is not
→˓provided, it is 0 by default.
[group:1]> select * from t_demo where name = fruit limit 1
{item_id=1, item_name=apple1, name=fruit}
1 row in set.

# use limit field to query the second line record. The offset is 1
[group:1]> select * from t_demo where name = fruit limit 1,1
{item_id=2, item_name=apple2, name=fruit}
1 rows in set.

Note:

• For querying the statement recording sql, the primary key field value of the table in the where clause must
be provided.

• The limit field in the relational database can be used. Providing two parameters which are offset and count.

• The where clause only supports the keyword ‘and’. Other keywords like ‘or’, ‘in’, ‘like’, ‘inner’, ‘join’,
‘union’, subquery, multi-table joint query, and etc. are not supported.

• The enter values with punctuation, spaces, or strings containing letters starting with a number requires
double quotation marks, and no more double quotation marks are allowed inside.

[update sql]

Run update sql statement to update the record in mysql statement form.

[group:1]> update t_demo set item_name = orange where name = fruit and item_id = 1
Update OK, 1 row affected.

Note:

• For updating the where clause of recording sql statement, the primary key field value of the table in the
where clause must be provided.

• The enter values with punctuation, spaces, or strings containing letters starting with a number requires
double quotation marks, and no more double quotation marks are allowed inside.

[delete sql]

Run delete sql statement to delete the record in mysql statement form.

[group:1]> delete from t_demo where name = fruit and item_id = 1
Remove OK, 1 row affected.

Note:

• For deleting the where clause of recording sql statement, the primary key field value of the table in the
where clause must be provided.

108 Chapter 6. Manual (Revision in progress)



FISCO BCOS EN Documentation, Release v2.2.0

• The enter values with punctuation, spaces, or strings containing letters starting with a number requires
double quotation marks, and no more double quotation marks are allowed inside.

6.8.7 Appendix: Java environment configuration

Install Java in ubuntu environment

# Install the default Java version (Java 8 version or above)
sudo apt install -y default-jdk
# query Java version
java -version

Install Java in CentOS environment

Note: the OpenJDK under CentOS does not work properly and needs to be replaced with the OracleJDK.

# To create new folder to install Java 8 version or above. To put the downloaded
→˓jdk in the software directory
# Download Java 8 version or above from Oracle official website (https://www.
→˓oracle.com/technetwork/java/javase/downloads/index.html). For example, to
→˓download jdk-8u201-linux-x64.tar.gz
$ mkdir /software
# To unzip jdk
$ tar -zxvf jdk-8u201-linux-x64.tar.gz
# To configure the Java environment and edit the /etc/profile file.
$ vim /etc/profile
# After opening the file, to enter the following three sentences into the file and
→˓exit
export JAVA_HOME=/software/jdk-8u201-linux-x64.tar.gz
export PATH=$JAVA_HOME/bin:$PATH
export CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar
# profile takes effect
$ source /etc/profile
# To inquire the Java version. If the result shows the version you just downloaded,
→˓ the installation is successful.
java -version

6.9 Manage blockchain accounts

FISCO BCOS uses accounts to identify each individual user. In a blockchain system each account corresponds
to a pair of public and private keys. The account named by the address string calculated by the secure one-way
algorithm such as sha256 hash, that is account address. For distinguishing from the address of smart contract,
the account address is often referred to as the external account address. The private key only known by the
user corresponds to the password in the traditional authentication model. Users need to prove that they own the
private key of the corresponding account through a secure cryptographic protocol for claiming their ownership of
the account, and performing some sensitive account operations.

Important: In the previous tutorials, for simplifying the operation, we operate with the account provided by the
tool by default. However, in actual application deployment, users need to create their own accounts and properly
save the account private key to avoid serious security problems such as account private key leakage.

In this article, we will specifically introduce the creation, storage and use of accounts. Readers are required to
have a basic knowledge of Linux.

6.9. Manage blockchain accounts 109



FISCO BCOS EN Documentation, Release v2.2.0

FISCO BCOS provides the get_account script and Web3SDK to create accounts, as well as a Web3SDK and
console to store account private keys. Users can choose to store the account private key as a file in PEM or
PKCS12 format according to their needs. The PEM format uses a plaintext storage private key, and the PKCS 12
encrypts and stores the private key using a user-provided password.

6.9.1 Create your account

Use script to create account

1. get script

curl -LO https://raw.githubusercontent.com/FISCO-BCOS/console/master/tools/get_
→˓account.sh && chmod u+x get_account.sh && bash get_account.sh -h

If you use guomi version fisco, please execute below command to get get_gm_account.sh

curl -LO https://raw.githubusercontent.com/FISCO-BCOS/console/master/tools/get_gm_
→˓account.sh && chmod u+x get_gm_account.sh && bash get_gm_account.sh -h

execute the above command and if you see the following output, you are downloading the correct script, otherwise
please try again.

Usage: ./get_account.sh
default generate account and store private key in PEM format file
-p generate account and store private key in PKCS12 format file
-k [FILE] calculate the address of PEM format [FILE]
-P [FILE] calculate the address of PKCS12 format [FILE]
-h Help

2. Generate private key in PEM format

• generate private key and address

bash get_account.sh

Execute the above command to get output similar to the following. It includes the account address and the private
key PEM file with the account address as the file name.

[INFO] Account Address : 0xee5fffba2da55a763198e361c7dd627795906ead
[INFO] Private Key (pem) : accounts/0xee5fffba2da55a763198e361c7dd627795906ead.pem

• Specify the calculation account address of PEM format

bash get_account.sh -k accounts/0xee5fffba2da55a763198e361c7dd627795906ead.pem

Execute the above command. The result is as follows

[INFO] Account Address : 0xee5fffba2da55a763198e361c7dd627795906ead

3. Use script to generate PKCS12 format private key

• generate private key and address

bash get_account.sh -p

110 Chapter 6. Manual (Revision in progress)



FISCO BCOS EN Documentation, Release v2.2.0

Execute the above command to get output similar to the following. You can follow the prompts to enter the
password and generate the corresponding p12 file.

Enter Export Password:
Verifying - Enter Export Password:
[INFO] Account Address : 0x02f1b23310ac8e28cb6084763d16b25a2cc7f5e1
[INFO] Private Key (p12) : accounts/0x02f1b23310ac8e28cb6084763d16b25a2cc7f5e1.p12

• Specify the calculation account address of p12 private key. Enter the p12 file password as prompted

bash get_account.sh -P accounts/0x02f1b23310ac8e28cb6084763d16b25a2cc7f5e1.p12

Execute the above command. The result is as follows

Enter Import Password:
MAC verified OK
[INFO] Account Address : 0x02f1b23310ac8e28cb6084763d16b25a2cc7f5e1

Calling Web3SDK to create an account

//create normal account
EncryptType.encryptType = 0;
//create national cryptography account, which uses for sending transaction to
→˓national blockchain node
// EncryptType.encryptType = 1;
Credentials credentials = GenCredential.create();
//account address
String address = credentials.getAddress();
//account private key
String privateKey = credentials.getEcKeyPair().getPrivateKey().toString(16);
//account public key
String publicKey = credentials.getEcKeyPair().getPublicKey().toString(16);

For more details on the operation, to see Creating and Using a Specified External Account.

6.9.2 Store your account credential

• web3SDK supports loading via private key string or file, so the private key of the account can be stored in
the database or in a local file.

• Local files support two storage formats, which are PKCS12 encrypted storage and PEM plaintext storage.

• When developing a service, you can select the storage management of private key according to the actual
business scenario.

6.9.3 Load your account credential

Console loads private key file

The console provides the account generation script get_account.sh. The generated account file is in the accounts
directory, and the account file loaded by console must be placed in this directory.

The console startup methods are as follows:

./start.sh

./start.sh groupID

./start.sh groupID -pem pemName

./start.sh groupID -p12 p12Name

6.9. Manage blockchain accounts 111

../sdk/sdk.html#id5


FISCO BCOS EN Documentation, Release v2.2.0

Default startup

Console randomly generates an account, startup with the group number specified in console configuration file.

./start.sh

Specify group number to startup

Console randomly generates an account, startup with the group number specified on the command line.

./start.sh 2

• Note: The specified group needs to configure bean in console configuration file.

Use PEM private key file to startup

• Startup with the account of the specified pem file. Enter the parameters: group number, -pem, and pem file
path

./start.sh 1 -pem accounts/0xebb824a1122e587b17701ed2e512d8638dfb9c88.pem

Use PKCS12 private key file to startup

• Startup with the account of the specified p12 file. Enter the parameters: group number, -p12, and p12 file
path

./start.sh 1 -p12 accounts/0x5ef4df1b156bc9f077ee992a283c2dbb0bf045c0.p12
Enter Export Password:

Web3SDK loads private file

If the account private key file in PEM or PKCS12 format is generated by the account generation script
get_accounts.sh, the account can be used by loading the PEM or PKCS12 account private key file. There are
two classes of private keys to be loaded: P12Manager and PEMManager. P12Manager is used to load the private
key file in PKCS12 format. PEMManager is used to load the private key file in PEM format.

• P12Manager usage example: configure the private key file path and password for the PKCS12 account in
applicationContext.xml

<bean id="p12" class="org.fisco.bcos.channel.client.P12Manager" init-method="load"
→˓>

<property name="password" value="123456" />
<property name="p12File" value=

→˓"classpath:0x0fc3c4bb89bd90299db4c62be0174c4966286c00.p12" />
</bean>

develop code

//load Bean
ApplicationContext context = new ClassPathXmlApplicationContext(
→˓"classpath:applicationContext.xml");
P12Manager p12 = context.getBean(P12Manager.class);

//provide password to get ECKeyPair. The password is specified when producing p12
→˓account file

(continues on next page)

112 Chapter 6. Manual (Revision in progress)



FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

ECKeyPair p12KeyPair = p12.getECKeyPair(p12.getPassword());

//output the private key and public key in hex string
System.out.println("p12 privateKey: " + p12KeyPair.getPrivateKey().toString(16));
System.out.println("p12 publicKey: " + p12KeyPair.getPublicKey().toString(16));

//generate Credentials for web3sdk using
Credentials credentials = Credentials.create(p12KeyPair);
System.out.println("p12 Address: " + credentials.getAddress());

• PEMManager usage example:

configure the private key file path and password for the PEM account in applicationContext.xml

<bean id="pem" class="org.fisco.bcos.channel.client.PEMManager" init-method="load"
→˓>

<property name="pemFile" value=
→˓"classpath:0x0fc3c4bb89bd90299db4c62be0174c4966286c00.pem" />
</bean>

load with code

//load Bean
ApplicationContext context = new ClassPathXmlApplicationContext(
→˓"classpath:applicationContext-keystore-sample.xml");
PEMManager pem = context.getBean(PEMManager.class);
ECKeyPair pemKeyPair = pem.getECKeyPair();

//output the private key and public key in hex string
System.out.println("PEM privateKey: " + pemKeyPair.getPrivateKey().toString(16));
System.out.println("PEM publicKey: " + pemKeyPair.getPublicKey().toString(16));

//generate Credentials for web3sdk using
Credentials credentialsPEM = Credentials.create(pemKeyPair);
System.out.println("PEM Address: " + credentialsPEM.getAddress());

6.9.4 Account address calculation

The account address of FISCO BCOS is calculated by the ECDSA public key. The hexadecimal of ECDSA public
key represents the calculation of keccak-256sum hash, and the hexadecimal of the last 20 bytes of the calculation
result is taken as the account address. Each byte requires two hexadecimal to represent, so the length of account
address is 40. FISCO BCOS’s account address is compatible with Ethereum.

Note: keccak-256sum is different from SHA3. For details to refer to here.

Ethernet Address Generation

1. generate ECDSA private key

First, we use OpenSSL to generate an elliptic curve private key. The parameters of the elliptic curve are secp256k1.
To run the following command to generate a private key in PEM format and save it in the ecprivkey.pem file.

openssl ecparam -name secp256k1 -genkey -noout -out ecprivkey.pem

Execute the following instructions to view the contents of the file.

cat ecprivkey.pem

You can see output similar to the following

6.9. Manage blockchain accounts 113

https://ethereum.stackexchange.com/questions/550/which-cryptographic-hash-function-does-ethereum-use
https://kobl.one/blog/create-full-ethereum-keypair-and-address/


FISCO BCOS EN Documentation, Release v2.2.0

-----BEGIN EC PRIVATE KEY-----
MHQCAQEEINHaCmLhw9S9+vD0IOSUd9IhHO9bBVJXTbbBeTyFNvesoAcGBSuBBAAK
oUQDQgAEjSUbQAZn4tzHnsbeahQ2J0AeMu0iNOxpdpyPo3j9Diq3qdljrv07wvjx
zOzLpUNRcJCC5hnU500MD+4+Zxc8zQ==
-----END EC PRIVATE KEY-----

Next, to calculate the public key based on the private key. To execute the following command.

openssl ec -in ecprivkey.pem -text -noout 2>/dev/null| sed -n '7,11p' | tr -d ": \n
→˓" | awk '{print substr($0,3);}'

You can get output similar to the following

8d251b400667e2dcc79ec6de6a143627401e32ed2234ec69769c8fa378fd0e2ab7a9d963aefd3bc2f8f1cceccba54351709082e619d4e74d0c0fee3e67173ccd

2. Calculate the address based on the public key

In this section, we calculate the corresponding account address based on the public key. The keccak-256sum tool
we need to get is available for download from here.

openssl ec -in ecprivkey.pem -text -noout 2>/dev/null| sed -n '7,11p' | tr -d ": \n
→˓" | awk '{print substr($0,3);}' | ./keccak-256sum -x -l | tr -d ' -' | tail -c 41

Get the output similar to the following, which is the calculated account address.

dcc703c0e500b653ca82273b7bfad8045d85a470

6.10 Smart contract development

FISCO BCOS platform currently supports three smart contract forms which are Solidity, CRUD, and pre-
compiled.

• The Solidity contract is the same as Ethereum on supporting the latest version.

• The CRUD interface supporting the distributed storage pre-compilation contract in the Solidity contract,
which can store the data of Solidtiy contract in the AMDB table structure, realizes the separation of contract
logic and data.

• The precompiled (precompiled) contract is developed in C++ and built into the FISCO BCOS platform.
It has better performance than the Solidity contract. Its contract interface that needs to be pre-determined
when compiling, is suitable for the scenarios with fixed logic but consensus, such as group configuration.
The development of precompiled contracts will be introduced in the next section.

6.10.1 Solidity contract development

• Solidity official file

• Remix online IDE

6.10.2 To use contract CRUD interface

Accessing AMDB requires using the AMDB-specific smart contract interface Table.sol which is a database
contract that can create tables and add, delete, and modify the tables.

114 Chapter 6. Manual (Revision in progress)

https://github.com/vkobel/ethereum-generate-wallet/tree/master/lib
https://solidity.readthedocs.io/en/latest/
https://remix.ethereum.org/


FISCO BCOS EN Documentation, Release v2.2.0

Note: To make the table created by AMDB accessible to multiple contracts, it should have a unique name that
acknowledged globally. So it is unable to create tables with same name within one group on the same chain

Table.sol file code is as follows:

pragma solidity ^0.4.24;

contract TableFactory {
function openTable(string) public constant returns (Table); // open table
function createTable(string,string,string) public returns(int); // create

→˓table
}

// inquiry conditions
contract Condition {

//equal to
function EQ(string, int) public;
function EQ(string, string) public;

//unequal to
function NE(string, int) public;
function NE(string, string) public;

//greater than
function GT(string, int) public;
//greater than or equal to
function GE(string, int) public;

//smaller than
function LT(string, int) public;
//smaller than or equal to
function LE(string, int) public;

//limit the number of return record
function limit(int) public;
function limit(int, int) public;

}

// single entry data record
contract Entry {

function getInt(string) public constant returns(int);
function getAddress(string) public constant returns(address);
function getBytes64(string) public constant returns(byte[64]);
function getBytes32(string) public constant returns(bytes32);
function getString(string) public constant returns(string);

function set(string, int) public;
function set(string, string) public;
function set(string, address) public;

}

// data record set
contract Entries {

function get(int) public constant returns(Entry);
function size() public constant returns(int);

}

// Table main type
contract Table {

// select interface
function select(string, Condition) public constant returns(Entries);

(continues on next page)

6.10. Smart contract development 115



FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

// insert interface
function insert(string, Entry) public returns(int);
// update interface
function update(string, Entry, Condition) public returns(int);
// remove interface
function remove(string, Condition) public returns(int);

function newEntry() public constant returns(Entry);
function newCondition() public constant returns(Condition);

}

Note:

• The type of key in insert, remove, update and select functions of Table contract is string, and the maximum
length is 255 characters

• The key type of the get/set interface of the Entry is string, with the maximum length of 255 characters. The
types supported by value are int256 (int), address and string, of which string cannot exceed 16MB.

To provide a contract case TableTest.sol. The code is as follows:

pragma solidity ^0.4.24;

import "./Table.sol";

contract TableTest {
event CreateResult(int count);
event InsertResult(int count);
event UpdateResult(int count);
event RemoveResult(int count);

// create table
function create() public returns(int){

TableFactory tf = TableFactory(0x1001); // TableFactory's address is
→˓fixed at 0x1001

// To create a table t_test. Table's key_field as name. Table's value_
→˓field as item_id and item_name.

// key_field indicates the row that AMDB's primary key value_field
→˓represents in the table. The row can be multiple and spearated by commas.

int count = tf.createTable("t_test", "name", "item_id,item_name");
emit CreateResult(count);

return count;
}

// inquiry data
function select(string name) public constant returns(bytes32[], int[],

→˓bytes32[]){
TableFactory tf = TableFactory(0x1001);
Table table = tf.openTable("t_test");

// If the condition is empty, it means no filtering. You can use
→˓conditional filtering as needed.

Condition condition = table.newCondition();

Entries entries = table.select(name, condition);
bytes32[] memory user_name_bytes_list = new bytes32[](uint256(entries.

→˓size()));
int[] memory item_id_list = new int[](uint256(entries.size()));
bytes32[] memory item_name_bytes_list = new bytes32[](uint256(entries.

→˓size())); (continues on next page)

116 Chapter 6. Manual (Revision in progress)



FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

for(int i=0; i<entries.size(); ++i) {
Entry entry = entries.get(i);

user_name_bytes_list[uint256(i)] = entry.getBytes32("name");
item_id_list[uint256(i)] = entry.getInt("item_id");
item_name_bytes_list[uint256(i)] = entry.getBytes32("item_name");

}

return (user_name_bytes_list, item_id_list, item_name_bytes_list);
}
// insert data
function insert(string name, int item_id, string item_name) public

→˓returns(int) {
TableFactory tf = TableFactory(0x1001);
Table table = tf.openTable("t_test");

Entry entry = table.newEntry();
entry.set("name", name);
entry.set("item_id", item_id);
entry.set("item_name", item_name);

int count = table.insert(name, entry);
emit InsertResult(count);

return count;
}
// update data
function update(string name, int item_id, string item_name) public

→˓returns(int) {
TableFactory tf = TableFactory(0x1001);
Table table = tf.openTable("t_test");

Entry entry = table.newEntry();
entry.set("item_name", item_name);

Condition condition = table.newCondition();
condition.EQ("name", name);
condition.EQ("item_id", item_id);

int count = table.update(name, entry, condition);
emit UpdateResult(count);

return count;
}
// remove data
function remove(string name, int item_id) public returns(int){

TableFactory tf = TableFactory(0x1001);
Table table = tf.openTable("t_test");

Condition condition = table.newCondition();
condition.EQ("name", name);
condition.EQ("item_id", item_id);

int count = table.remove(name, condition);
emit RemoveResult(count);

return count;
}

}

TableTest.sol has called the intelligent contract Table.sol of AMDB, which implements creating the

6.10. Smart contract development 117



FISCO BCOS EN Documentation, Release v2.2.0

user table t_test and the functions of adding, deleting and changing t_test. The t_test table is structured
as follows. This table records the item and item’s numbers used by a employees.

The client requiring to call the contract code which is converted to Java file, needs to put TableTest.sol and
Table.sol into the directory contracts/solidity, and TableTest.java is generated by the compile script of sol2java.sh.

6.10.3 Precompiled contract development

1. Introduction

Precompiled contract is a natively supported feature of Ethereum: a contract that uses C++ code to implement spe-
cific functions at the underlying platform for EVM module calling. FISCO BCOS inherits and extends this feature,
and has developed a powerful and easy-to-expand framework on this basis of it.precompiled design principle.

This article is an introductory to guide users on how to implement their own precompiled contracts and how to
call them.

2. Implement precompiled contracts

2.1 Process

The process of implementing a pre-compiled contract:

• assign contract address

For calling a solid contract or pre-compiled contract, you need to distinguish it by the contract address and address
space.

The address range of user assigned interval is 0x5001-0xffff. Users needs to assign an unused address to the
new precompiled contract. The precompiled contract addresses must be unique and not conflicting.

List of precompiled contracts and address assignments implemented in FISCO BCOS:

• define contract interface

It is similar to solidity contract. When designing a contract, you need to determine the ABI interface of the contract
first. The ABI interface rules of the precompiled contract are exactly the same as the solidity. solidity ABI link.

When defining a precompiled contract interface, you usually need to define a solidity contract with
the same interface, and empty the function body of all interfaces. This contract is called interface
contract of the precompiled contract. The interface contract need to be used when calling the pre-
compiled contract.

pragma solidity ^0.4.24;
contract Contract_Name {

function interface0(parameters ... ) {}
....
function interfaceN(parameters ... ) {}

}

• design storage structure

When a precompiled contract involves a storage operation, it needs to determine the stored table information
(table name and table structure. The stored data will be uniformly abstracted into a table structure in FISCO
BCOS)storage structure.

Note: This process can be omitted without involving a storage operation.

• implement contract logic

118 Chapter 6. Manual (Revision in progress)

https://solidity.readthedocs.io/en/latest/abi-spec.html


FISCO BCOS EN Documentation, Release v2.2.0

For implementing the calling logic of the new contract, you need to implement a new C++ class that needs to inherit
[precompiled] (https://github.com/FISCO-BCOS/FISCO-BCOS/blob/master/libblockverifier/Precompiled.h)
#L37 ) to overload the call function for achieving the calling behaviour of each interface.

// libblockverifier/Precompiled.h
class Precompiled
{

virtual bytes call(std::shared_ptr<ExecutiveContext> _context,
→˓bytesConstRef _param,

Address const& _origin = Address()) = 0;
};

The call function has three parameters:

std::shared_ptr<ExecutiveContext> _context : the context for the transaction execution saving

bytesConstRef _param : calling the parameter information of the contract. The calling corresponding
contract interface and the parameters of interface can be obtained from _param parsing.

Address const& _origin : transaction sender for permission control

How to implement a Precompiled class will be detailed in the sample below.

• register contract

Finally, the contract address and the corresponding class need to be registered to the execution context of the
contract, so that the execution logic of the contract can be correctly recognized when the precompiled contract is
called by the address. To view the registered pre-compiled contract list.

Registration path:

file libblockverifier/ExecutiveContextFactory.cpp
function initExecutiveContext

2.2 sample contract development

// HelloWorld.sol
pragma solidity ^0.4.24;

contract HelloWorld{
string name;

function HelloWorld(){
name = "Hello, World!";

}

function get()constant returns(string){
return name;

}

function set(string n){
name = n;

}
}

The above source code is the HelloWorld contract written by solidity. This chapter will implement a precompiled
contract with the same function to enable user step by step to have an visual understanding to the precompiled
contract. sample c++source code path:

libprecompiled/extension/HelloWorldPrecompiled.h
libprecompiled/extension/HelloWorldPrecompiled.cpp

6.10. Smart contract development 119

https://github.com/FISCO-BCOS/FISCO-BCOS/blob/master/libblockverifier/ExecutiveContextFactory.cpp#L36
https://github.com/FISCO-BCOS/FISCO-BCOS/blob/master/libprecompiled/extension/HelloWorldPrecompiled.cpp


FISCO BCOS EN Documentation, Release v2.2.0

2.2.1 assign contract address

Referring to the address range, the address of the HelloWorld precompiled contract is assigned as:

0x5001

2.2.2 define contract interface

We need to implement the HelloWorld contract function. The interface is the same as the HelloWorld interface.
HelloWorldPrecompiled interface contract:

pragma solidity ^0.4.24;

contract HelloWorldPrecompiled {
function get() public constant returns(string) {}
function set(string _m) {}

}

2.2.3 design storage structure

HelloWorldPrecompiled needs to store the string value of the set, so when it comes to storage operations, you
need to design the stored table structure.

table name: _ext_hello_world_

table structure:

The table stores only a pair of key-value pairs. The key field is hello_key and the value field is hello_value. For
storing the corresponding string value, it can be modified by the set(string) interface and obtained by the get()
interface.

2.2.4 implement call logic

To add the HelloWorldPrecompiled class, overload the call function, and implement the calling behavior of all
interfaces.call function source code.

The user-defined Precompiled contract needs to add a new class for defining the calling behaviour of the contract
in the class. In the example, for adding the HelloWorldPrecompiled class, the following work must complete:

• interface registration

// define all interfaces in the class
const char* const HELLO_WORLD_METHOD_GET = "get()";
const char* const HELLO_WORLD_METHOD_SET = "set(string)";

// register interface in the constructor
HelloWorldPrecompiled::HelloWorldPrecompiled()
{

// name2Selector is a member of the Base class Precompiled, which saves the
→˓mapping relationship of the interface call.

name2Selector[HELLO_WORLD_METHOD_GET] = getFuncSelector(HELLO_WORLD_METHOD_
→˓GET);

name2Selector[HELLO_WORLD_METHOD_SET] = getFuncSelector(HELLO_WORLD_METHOD_
→˓SET);
}

• table creation

define the table’s name and field structure

120 Chapter 6. Manual (Revision in progress)

https://github.com/FISCO-BCOS/FISCO-BCOS/blob/master/libprecompiled/extension/HelloWorldPrecompiled.cpp#L66


FISCO BCOS EN Documentation, Release v2.2.0

// define the name
const std::string HELLO_WORLD_TABLE_NAME = "_ext_hello_world_";
// define the key field
const std::string HELLOWORLD_KEY_FIELD = "key";
// "field0,field1,field2" define other fields, multiple fields separated by commas,
→˓ such as "field0,field1,field2"
const std::string HELLOWORLD_VALUE_FIELD = "value";

// In the call function, the table is opened when it exists, otherwise the table
→˓is created first.
Table::Ptr table = openTable(_context, HELLO_WORLD_TABLE_NAME);
if (!table)
{

// table is created while it does not exist
table = createTable(_context, HELLO_WORLD_TABLE_NAME, HELLOWORLD_KEY_FIELD,

HELLOWORLD_VALUE_FIELD, _origin);
if (!table)
{

// fail to create and return false
}

}

After getting the operation handle of the table, user can implement the specific logic of the table operation.

• call interface distinguishing

Parsing _param with getParamFunc can distinguish the call interface.

Note: the contract interface must be registered in the constructor

uint32_t func = getParamFunc(_param);
if (func == name2Selector[HELLO_WORLD_METHOD_GET])
{

// get() call interface logic
}
else if (func == name2Selector[HELLO_WORLD_METHOD_SET])
{

// set(string) call interface logic
}
else
{

// unknown interface, call error, return error
}

• Parameter parsing and result return

The parameters during calling the contract are included in the _param parameter of the call function. They are
encoded according to the Solidity ABI format. The dev::eth::ContractABI utility class can be used to
parse the parameters. Similarly, when the interface returns, the return value also needs to be encoded according to
the format. Solidity ABI。

In dev::eth::ContractABI class, we need to use two interfaces abiIn abiOut. The former serializes
the former user parameter and the latter can parse the parameter from the serialized data.

// to serialize ABI data. c++ type data serialized to the format used by evm
// _id: The corresponding string of the function interface declaration, which
→˓generally default to ""
template <class... T> bytes abiIn(std::string _id, T const&... _t)
// to parse serialized data into c++ type data
template <class... T> void abiOut(bytesConstRef _data, T&... _t)

The sample code below shows how the interface works:

6.10. Smart contract development 121

https://solidity.readthedocs.io/en/latest/abi-spec.html


FISCO BCOS EN Documentation, Release v2.2.0

// for transfer interface: transfer(string,string,uint256)

// Parameter1
std::string str1 = "fromAccount";
// Parameter12
std::string str2 = "toAccount";
// Parameter13
uint256 transferAmoumt = 11111;

dev::eth::ContractABI abi;
// serialization, abiIn first string parameter default to ""
bytes out = abi.abiIn("", str1, str2, transferAmoumt);

std::string strOut1;
std::string strOut2;
uint256 amoumt;

// parse parameter
abi.abiOut(out, strOut1, strOut2, amount);
// parse after
// strOut1 = "fromAccount";
// strOut2 = "toAccount"
// amoumt = 11111

Finally, the HelloWorldPrecompiled call function is implemented completely.source code link.

bytes HelloWorldPrecompiled::call(dev::blockverifier::ExecutiveContext::Ptr _
→˓context,

bytesConstRef _param, Address const& _origin)
{

// parse function interface
uint32_t func = getParamFunc(_param);
//
bytesConstRef data = getParamData(_param);
bytes out;
dev::eth::ContractABI abi;

// open table
Table::Ptr table = openTable(_context, HELLO_WORLD_TABLE_NAME);
if (!table)
{

// table is created while it does not exist
table = createTable(_context, HELLO_WORLD_TABLE_NAME, HELLOWORLD_KEY_FIELD,

HELLOWORLD_VALUE_FIELD, _origin);
if (!table)
{

// fail to create table. no authority?
out = abi.abiIn("", CODE_NO_AUTHORIZED);
return out;

}
}

// to distinguish the calling interface and specify the calling logic of each
→˓interface

if (func == name2Selector[HELLO_WORLD_METHOD_GET])
{ // get() call interface

// default to return value
std::string retValue = "Hello World!";
auto entries = table->select(HELLOWORLD_KEY_FIELD_NAME, table->

→˓newCondition());
if (0u != entries->size())
{

(continues on next page)

122 Chapter 6. Manual (Revision in progress)

https://github.com/FISCO-BCOS/FISCO-BCOS/blob/master/libprecompiled/extension/HelloWorldPrecompiled.cpp#L66


FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

auto entry = entries->get(0);
retValue = entry->getField(HELLOWORLD_VALUE_FIELD);

}
out = abi.abiIn("", retValue);

}
else if (func == name2Selector[HELLO_WORLD_METHOD_SET])
{ // set(string) call interface

std::string strValue;
abi.abiOut(data, strValue);
auto entries = table->select(HELLOWORLD_KEY_FIELD_NAME, table->

→˓newCondition());
auto entry = table->newEntry();
entry->setField(HELLOWORLD_KEY_FIELD, HELLOWORLD_KEY_FIELD_NAME);
entry->setField(HELLOWORLD_VALUE_FIELD, strValue);

int count = 0;
if (0u != entries->size())
{ // value exists, update

count = table->update(HELLOWORLD_KEY_FIELD_NAME, entry, table->
→˓newCondition(),

std::make_shared<AccessOptions>(_origin));
}
else
{ // value does not exist, insert

count = table->insert(
HELLOWORLD_KEY_FIELD_NAME, entry, std::make_shared<AccessOptions>(_

→˓origin));
}

if (count == CODE_NO_AUTHORIZED)
{ // no table operation authority

PRECOMPILED_LOG(ERROR) << LOG_BADGE("HelloWorldPrecompiled") << LOG_
→˓DESC("set")

<< LOG_DESC("non-authorized");
}
out = abi.abiIn("", u256(count));

}
else
{ // parameter error, unknown calling interface

PRECOMPILED_LOG(ERROR) << LOG_BADGE("HelloWorldPrecompiled") << LOG_DESC("
→˓unknown func ")

<< LOG_KV("func", func);
out = abi.abiIn("", u256(CODE_UNKNOW_FUNCTION_CALL));

}

return out;
}

2.2.5 Register contract and compile source code

• Register Precompiled contract. Modify FISCO-BCOS/cmake/templates/UserPrecompiled.h.
in, register the address of HelloWorldPrecompiled contract in its below function. Default to be
existed, and revoke annotation.

void
→˓dev::blockverifier::ExecutiveContextFactory::registerUserPrecompiled(dev::blockverifier::ExecutiveContext::Ptr
→˓context)
{

(continues on next page)

6.10. Smart contract development 123



FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

// Address should in [0x5001,0xffff]
context->setAddress2Precompiled(Address(0x5001), std::make_shared

→˓<dev::precompiled::HelloWorldPrecompiled>());
}

• Compile source code. Please read here to install dependencies and compile source code.

Note：The implemented HelloWorldPrecompiled.cpp and header files should be placed under FISCO-
BCOS/libprecompiled/extension directory.

• Build FISCO BCOS consortium blockchain Given that it is stored under FISCO-BCOS/build directory,
use the following instruction to build chain for node 4. For more options please read here.

bash ../tools/build_chain.sh -l "127.0.0.1:4" -e bin/fisco-bcos

3 Calling

From the user’s viewing, the pre-compiled contract is basically the same as the solidity contract. The only differ-
ence is the solidity contract can obtain the contracted address after deployment while the per-compiled contract
can be used directly without deployment because of the pre-compiled contract address is pre-allocated.

3.1 Call HelloWorld precompiled contract using console

Create HelloWorldPrecompiled.sol file under console contracts/solidity with the content of interface declaration:

pragma solidity ^0.4.24;
contract HelloWorldPrecompiled{

function get() public constant returns(string);
function set(string n);

}

After the nodes are built by compiled binaries, deploy console v1.0.2
and above version and execute the following statement to call contract:

3.2 Call solidity

Now, we try to create precompiled contract object and call its interface in Solidity contract. Create HelloWorld-
Helper.sol file in console contracts/solidity with the following content:

pragma solidity ^0.4.24;
import "./HelloWorldPrecompiled.sol";

contract HelloWorldHelper {

(continues on next page)

124 Chapter 6. Manual (Revision in progress)

get_executable.html#id2


FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

HelloWorldPrecompiled hello;
function HelloWorldHelper() {

// call HelloWorld precompiled contract
hello = HelloWorldPrecompiled(0x5001);

}
function get() public constant returns(string) {

return hello.get();
}
function set(string m) {

hello.set(m);
}

}

Deploy HelloWorldHelper contract and call the interface of HelloWorldHelper contract, you will get the following

result:

6.11 Parallel contract

FISCO BCOS provides development structure for parallel contract. Contract developed under the structure regu-
lation can be parallelly executed by nodes of FISCO BCOS. The advantages of parallel contract include:

• high TPS: multiple independent transaction being executed at the same time can utilize the CPU resources
to the most extent and reach high TPS

• scalable: improve the performance of transaction execution with better configuration of machine to support
expansion of applications

The following context will introduce how to compile, deploy and execute FISCO BCOS parallel contract.

6.11.1 Basic knowledge

Parallel exclusion

Whether two transactions can be executed in parallel depends on whether they are mutually exclusive. By exclu-
sive, it means the two transactions have intersection in their contract storage variables collection.

Taking payment transfer as an example, it involves transactions of payment transfer between users. Use transfer(X,
Y) to represent the access of user X to user Y. The exclusion is as below.

Here are detailed definitions:

• exclusive parameter：parameter that is related to “read/write” of contract storage variable in contract in-
terface. Such as the interface of payment transfer transfer(X, Y), in which X and Y are exclusive parameters.

• exclusive object：the exclusive content extracted from exclusive parameters. Such as the payment transfer
interface transfer(X, Y). In a transaction that calls the interface, the parameter is transfer(A, B), then the
exclusive object is [A, B]; for another transaction that calls parameter transfer(A, C), the exclusive object is
[A, C].

6.11. Parallel contract 125



FISCO BCOS EN Documentation, Release v2.2.0

To judge whether 2 transactions at the same moment can be executed in parallel depends on whether there
is intersection between their exclusive objects. Transaction without intersection can be executed in parallel.

6.11.2 Compile parallel contract

FISCO BCOS provides parallel contract development structure. Developers only need to adhere to its regu-
lation and define the exclusive parameter of each contract interface so as to realize parallelly executed contract.
When contract is deployed, FISCO BCOS will auto-analyze exclusive object before the transaction is excuted to
make non-dependent transaction execute in parallel as much as possible.

So far, FISCO BCOS offers two types of parallel contract development structure: solidity and Precompiled con-
tract.

Solidity development structure

Parallel solidity contract shares the same development process with regular solidity contract: make
ParallelContract as the base class of the parallel contract and call registerParallelFunction()
to register the interface. （ParallelContract.sol can be found at here）

Here is a complete example of how ParallelOk contract realize parallel payment transfer

pragma solidity ^0.4.25;

import "./ParallelContract.sol"; // import ParallelContract.sol

contract ParallelOk is ParallelContract // make ParallelContract as the base class
{

// contract realization
mapping (string => uint256) _balance;

function transfer(string from, string to, uint256 num) public
{

// here is a simple example, please use SafeMath instead of "+/-" in real
→˓production

_balance[from] -= num;
_balance[to] += num;

}

function set(string name, uint256 num) public
{

_balance[name] = num;
}

function balanceOf(string name) public view returns (uint256)
{

return _balance[name];
}

// register parallel contract interface
function enableParallel() public
{

// function defined character string (no blank space behind ","), the
→˓former part of parameter constitutes exclusive parameter (which should be put
→˓ahead when designing function)

registerParallelFunction("transfer(string,string,uint256)", 2); //
→˓critical: string string

registerParallelFunction("set(string,uint256)", 1); // critical: string
}

// revoke parallel contract interface

(continues on next page)

126 Chapter 6. Manual (Revision in progress)

./smart_contract.html#id1
./smart_contract.html#id2
./smart_contract.html#id2
./smart_contract.html#id1
https://github.com/FISCO-BCOS/web3sdk/blob/master/src/test/resources/contract/ParallelContract.sol
https://github.com/FISCO-BCOS/web3sdk/blob/master/src/test/resources/contract/ParallelContract.sol


FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

function disableParallel() public
{

unregisterParallelFunction("transfer(string,string,uint256)");
unregisterParallelFunction("set(string,uint256)");

}
}

The detail steps are:

（（（1）））make ParallelContract as the base class of contract

pragma solidity ^0.4.25;

import "./ParallelContract.sol"; // import ParallelContract.sol

contract ParallelOk is ParallelContract // make ParallelContract as the base class
{

// contract realization

// register parallel contract interface
function enableParallel() public;

// revoke parallel contract interface
function disableParallel() public;

}

（（（2）））Compile parallel contract interface

Public function in contract is the interface of contract. To compile a parallel contract interface is to realize the
public function of a contract according to certain rules.

Confirm whether the interface is parallelable

A parallelable contract interface has to meet following conditions:

• no call of external contract

• no call of other function interface

Confirm exclusive parameter

Before compiling interface, please confirm the exclusive parameter of interface. The exclusion of interface is the
exclusion of global variables. The confirmation of exclusive parameter has following rules:

• the interface accessed global mapping, the key of mapping is the exclusive parameter

• the interface accessed global arrays, the subscript of a array is the exclusive parameter

• the interface accessed simple type of global variables, all the simple type global variables share one exclusive
parameter and use different variable names as the exclusive objects.

For example: If setA(int x)writes globalA, we need to declare it as setA(string aflag,
int x) and call it like setA("globalA", 10) by using globalA to declare the exclusive
object.

Confirm parameter type and sequence

After the exclusive parameter is confirmed, confirm parameter type and sequence according to following rules:

• interface parameter is limited to: string、、、address、、、uint256、、、int256 (more types coming in the future)

• exclusive parameter should all be contained in interface parameter

• all exclusive should be put in the beginning of the interface parameter

6.11. Parallel contract 127



FISCO BCOS EN Documentation, Release v2.2.0

mapping (string => uint256) _balance; // global mapping

// exclusive variable from, to are put at the beginning of transfer()
function transfer(string from, string to, uint256 num) public
{

_balance[from] -= num; // from is the key of global mapping, the exclusive
→˓parameter

_balance[to] += num; // to is the key of global mapping, the exclusive
→˓parameter
}

// the exclusive variable name is put at the beginning of the parameter of set()
function set(string name, uint256 num) public
{

_balance[name] = num;
}

（（（3）））Register parallelable contract interface

Implement enableParallel() function in contract, call registerParallelFunction() to register parallelable contract
interface, and implement disableParallel() function to endow the contract with ability to revoke parallel execution.

// register parallelable contract interface
function enableParallel() public
{

// function defined character string (no blank space behind ","), the
→˓parameter starts with exclusive parameters

registerParallelFunction("transfer(string,string,uint256)", 2); // transfer
→˓interface, the former 2 is exclusive parameter

registerParallelFunction("set(string,uint256)", 1); // transfer interface, the
→˓first 1 is exclusive parameter
}

// revoke parallel contract interface
function disableParallel() public
{

unregisterParallelFunction("transfer(string,string,uint256)");
unregisterParallelFunction("set(string,uint256)");

}

（（（4）））Deploy/execute parallel contract

Compile and deploy contract through Console or Web3SDK. Here we use console as an example.

deploy contract

[group:1]> deploy ParallelOk.sol

call enableParallel() interface to make ParallelOk executed parallelly

[group:1]> call ParallelOk.sol 0x8c17cf316c1063ab6c89df875e96c9f0f5b2f744
→˓enableParallel

send parallel transaction set()

[group:1]> call ParallelOk.sol 0x8c17cf316c1063ab6c89df875e96c9f0f5b2f744 set
→˓"jimmyshi" 100000

send parallel transaction transfer()

[group:1]> call ParallelOk.sol 0x8c17cf316c1063ab6c89df875e96c9f0f5b2f744 transfer
→˓"jimmyshi" "jinny" 80000

check transaction execution result balanceOf()

128 Chapter 6. Manual (Revision in progress)



FISCO BCOS EN Documentation, Release v2.2.0

[group:1]> call ParallelOk.sol 0x8c17cf316c1063ab6c89df875e96c9f0f5b2f744
→˓balanceOf "jinny"
80000

The following context contains an example to send massive transaction through SDK.

Precompile parallel contract structure

Parallel precompiled contract has the same compilation and development process with regular precompiled con-
tract. Regular precompiled contract uses Precompile as the base class to implement contract logical. Based on
this, Precompile base class offers 2 virtual functions for parallel to enable implementation of parallel precompiled
contract.

（（（1）））Define the contract as parallel contract

bool isParallelPrecompiled() override { return true; }

（（（2）））Define parallel interface and exclusive parameter

It needs attention that once contract is defined parallelable, all interfaces need to be defined. If an interface is
returned with null, it has no exclusive object. Exclusive parameter is related to the implementation of precompiled
contract, which needs understanding of FISCO BCOS storage. You can read the codes or consult experienced
programmer for implementation details.

// take out exclusive object from parallel interface parameter, return exclusive
→˓object
std::vector<std::string> getParallelTag(bytesConstRef param) override
{

// get the func and data to be called
uint32_t func = getParamFunc(param);
bytesConstRef data = getParamData(param);

std::vector<std::string> results;
if (func == name2Selector[DAG_TRANSFER_METHOD_TRS_STR2_UINT]) // function is

→˓parallel interface
{

// interfaces：userTransfer(string,string,uint256)
// take out exclusive object from data
std::string fromUser, toUser;
dev::u256 amount;
abi.abiOut(data, fromUser, toUser, amount);

if (!invalidUserName(fromUser) && !invalidUserName(toUser) && (amount > 0))
{

// write results to exclusive object
results.push_back(fromUser);
results.push_back(toUser);

}
}
else if ... // all interfaces needs to offer exclusive object, returning null

→˓means no exclusive object

return results; //return exclusion
}

（（（3）））Compile, restart node

To manually compile nodes please check here

After compilation, close node and replace with the original node binaries, and restart node.

6.11. Parallel contract 129

./smart_contract.html#id2
./smart_contract.html#id2


FISCO BCOS EN Documentation, Release v2.2.0

6.11.3 Example: parallel payment transfer

Here gives 2 parallel examples of solidity contract and precompiled contract.

Config environment

The execution environment in this case:

• Web3SDK client end

• a FISCO BCOS chain

Web3SDK is to send parallel transaction, FISCO BCOS chain is to execute parallel transaction. The related
configuration are:

• Web3SDK configuration

• Chain building

For pressure test on maximum performance, it at least needs:

• 3 Web3SDKs to generate enough transactions

• 4 nodes, all Web3SDKs are configured with all information of nodes on chain to send transaction evenly to
each node so that the chain can receive enough transaction

Parallel Solidity contract: ParallelOk

Payment transfer based on account model is a typical operation. ParallelOk contract is an example of account
model and is capable of parallel transfer. The ParallelOk contract is given in former context.

FISCO BCOS has built-in ParallelOk contract in Web3SDK. Here is the operation method to send massive parallel
transactions through Web3SDK.

（（（1）））Deploy contract, create new user, activate parallel contract through SDK

# parameters：<groupID> add <quantity of users created> <TPS request of the
→˓creation operation> <user information file name>
java -cp conf/:lib/*:apps/* org.fisco.bcos.channel.test.parallel.parallelok.
→˓PerformanceDT 1 add 10000 2500 user
# 10000 users has been created in group1, creation transactions are sent at
→˓2500TPS, the generated user information is stored in user

After executed, ParallelOk contract will be deployed to blockchain, the created user information is stored in user
file, and the parallel ability of ParallelOk contract is activated.

（（（2）））Send parallel transfer transactions in batch

Note: before send transactions in batch, please adjust the SDK log level to ERROR to ensure capacity.

# parameter：<groupID> transfer <transaction volume> <TPS limit of the transfer
→˓request> <user information file> <the exclusion percentage of transaction：0~10>
java -cp conf/:lib/*:apps/* org.fisco.bcos.channel.test.parallel.parallelok.
→˓PerformanceDT 1 transfer 100000 4000 user 2

# 100000 transactions have been sent to group1, the TPS limit is 4000, users are
→˓the same in the user file created formerly, 20% of exclusion exists between
→˓transactions.

（（（3）））Verify parallel correctness

After parallel transaction is executed, Web3SDK will print execution result. TPS is the TPS executed on node in
the transaction sent by SDK. validation is the verification of transfer transaction result.

130 Chapter 6. Manual (Revision in progress)



FISCO BCOS EN Documentation, Release v2.2.0

Total transactions: 100000
Total time: 34412ms
TPS: 2905.9630361501804
Avg time cost: 4027ms
Error rate: 0%
Return Error rate: 0%
Time area:
0 < time < 50ms : 0 : 0.0%
50 < time < 100ms : 44 : 0.044000000000000004%
100 < time < 200ms : 2617 : 2.617%
200 < time < 400ms : 6214 : 6.214%
400 < time < 1000ms : 14190 : 14.19%
1000 < time < 2000ms : 9224 : 9.224%
2000 < time : 67711 : 67.711%
validation:

user count is 10000
verify_success count is 10000
verify_failed count is 0

We can see that the TPS of this transaction is 2905. No error (verify_failed count is 0) after execution
result is verified.

（（（4）））Count total TPS

Single Web3SDK cannot send enough transactions to reach the parallel execution limit of nodes. It needs multiple
Web3SDKs to send transactions at the same time. TPS by simply summing together won’t be correct enough
when multiple Web3SDKs sending transactions, so it should be acquired directly from node.

count TPS from log file using script

cd tools
sh get_tps.sh log/log_2019031821.00.log 21:26:24 21:26:59 # parameters：<log file>
→˓<count start time> <count end time>

get TPS（2 SDK, 4 nodes, 8 cores, 16G memory）

statistic_end = 21:26:58.631195
statistic_start = 21:26:24.051715
total transactions = 193332, execute_time = 34580ms, tps = 5590 (tx/s)

Parallel precompiled contract: DagTransferPrecompiled

Same with the function of ParallelOk contract, FISCO BCOS has built-in example of parallel precompiled con-
tract (DagTransferPrecompiled) and realizes transfer function based on account model. The contract can manage
deposits from multiple users and provides a parallel transfer interface for parallel transactions of payment transfer
between users.

Note: DagTransferPrecompiled is the example of parallel transaction with simple functions, please don’t
use it for online transactions.

（（（1）））Create user

Use Web3SDK to send transaction to create user, the user information will be stored in user file. Command
parameter is the same with parallelOk, the only difference is that the object called by the command is precompile.

# parameters：<groupID> add <created user quantity> <TPS requests in this operation>
→˓ <user information file name>
java -cp conf/:lib/*:apps/* org.fisco.bcos.channel.test.parallel.precompile.
→˓PerformanceDT 1 add 10000 2500 user
# 10000 users has been created in group1, creation transactions are sent at 2500
→˓TPS, the generated user information is stored in user file

6.11. Parallel contract 131

https://github.com/FISCO-BCOS/FISCO-BCOS/blob/master/libprecompiled/extension/DagTransferPrecompiled.cpp


FISCO BCOS EN Documentation, Release v2.2.0

（（（2）））Send parallel transfer transactions in batch

Send parallel transfer transactions through Web3SDK

Note: before sending transactions in batch, please adjust SDK log level to ERROR for enough capability to
send transactions.

# parameters：<groupID> transfer <transaction volume> <TPS limit of the transfer
→˓request> <user information file> <transaction exclusion percentage: 0~10>
java -cp conf/:lib/*:apps/* org.fisco.bcos.channel.test.parallel.precompile.
→˓PerformanceDT 1 transfer 100000 4000 user 2
# 100000 transactions has been sent to group1, the TPS limit is 4000, users are
→˓the same ones in the user file created formerly, 20% exclusion exists between
→˓transactions.

（（（3）））Verify parallel correctness

After parallel transactions are executed, Web3SDK will print execution result. TPS is the TPS of the transaction
sent by SDK on the node. validation is the verification of transfer execution result.

Total transactions: 80000
Total time: 25451ms
TPS: 3143.2949589407094
Avg time cost: 5203ms
Error rate: 0%
Return Error rate: 0%
Time area:
0 < time < 50ms : 0 : 0.0%
50 < time < 100ms : 0 : 0.0%
100 < time < 200ms : 0 : 0.0%
200 < time < 400ms : 0 : 0.0%
400 < time < 1000ms : 403 : 0.50375%
1000 < time < 2000ms : 5274 : 6.592499999999999%
2000 < time : 74323 : 92.90375%
validation:

user count is 10000
verify_success count is 10000
verify_failed count is 0

We can see that in this transaction, the TPS is 3143. No error (verify_failed count is 0) after execution
result verification.

（（（4）））Count total TPS

Single Web3SDK can send enough transactions to meet the parallel execution limit of node. It needs multiple
Web3SDK to send tranactions. And by simply summing the TPS of each transaction won’t be correct, so the TPS
should be acquired from node directly.

Count TPS from log file using script

cd tools
sh get_tps.sh log/log_2019031311.17.log 11:25 11:30 # parameter：<log file> <count
→˓start time> <count end time>

get TPS (3 SDK, 4 nodes, 8 cores, 16G memory)

statistic_end = 11:29:59.587145
statistic_start = 11:25:00.642866
total transactions = 3340000, execute_time = 298945ms, tps = 11172 (tx/s)

Result description

The performance result in the example of this chapter is tested in 3SDK, 4 nodes, 8 cores, 16G memory, 1G
network. Each SDK and node are deployed in different VPS with cloud disk. The real TPS depends on the

132 Chapter 6. Manual (Revision in progress)



FISCO BCOS EN Documentation, Release v2.2.0

condition of your hardware configuration, operation system and bandwidth.

6.12 Distributed storage

6.12.1 Install MySQL

The currently supported distributed database is MySQL. Before using distributed storage, you need to set up the
MySQL service. The configuration on Ubuntu and CentOS servers is as follows:

Ubuntu: Execute the following three commands to configure the root account password during the installation
process.

sudo apt install -y mysql-server mysql-client libmysqlclient-dev

Start the MySQL service and log in: root account password.

sudo service mysql start
mysql -uroot -p

CentOS: Perform the following two commands to install.

yum install mysql*
# some versions of linux need to install mariadb which is a branch of mysql
yum install mariadb*

Start the MySQL service. Log in and set a password for the root user.

service mysqld start
#If mariadb is installed, to use the following command to start
service mariadb start
mysql -uroot
mysql> set password for root@localhost = password('123456');

6.12.2 Node directly connected to MySQL

FISCO BCOS in version 2.0.0-rc3 supports nodes directly connected to MySQL through connection pool. Com-
pared to the proxy access MySQL mode, this configuration is simple. No need to manually create a database.
Please refer to the configuration method:

Logical architecture diagram

The multi-group architecture means that blockchain node supports launching multiple groups. The
transaction processing, data storage, and block consensus among the groups are isolated from each
other. Therefore, each node in the group corresponds to a database instance. For example, in
blockchain network, there are three nodes A, B, and C, where A and B belong to Group1, and
B and C belong to Group2. Nodes A and C correspond to one database instance respectively,
and Node B corresponds to two database instances. The logical architecture diagram is as follows.

6.12. Distributed storage 133



FISCO BCOS EN Documentation, Release v2.2.0

As shown in the above figure, NodeB belongs to multiple groups. The database instances which are corresponded
by the same node in different groups are separate. For distinguishing the same node in different groups, the
nodes of A, B, and C are respectively represented with Group1_A (NodeA in Group1, same as below), Group1_B,
Group2_B, and Group2_C.

We use the above figure as an example to describe the setup configuration process in following.

Build node

Before using distributed storage, you need to complete the establishment of the alliance chain and the configuration
of multiple groups. For details, refer to the following steps.

Prepare dependence

mkdir -p ~/fisco && cd ~/fisco
# Download build_chain.sh script
curl -LO https://github.com/FISCO-BCOS/FISCO-BCOS/releases/download/v2.2.0/build_
→˓chain.sh && chmod u+x build_chain.sh

Generate configuration file

# generate blockchain configuration file ipconf
cat > ipconf << EOF
127.0.0.1:1 agencyA 1
127.0.0.1:1 agencyB 1,2
127.0.0.1:1 agencyC 2
EOF

# view configuration file
cat ipconf
127.0.0.1:1 agencyA 1
127.0.0.1:1 agencyB 1,2
127.0.0.1:1 agencyC 2

134 Chapter 6. Manual (Revision in progress)



FISCO BCOS EN Documentation, Release v2.2.0

Build blockchain with build_chain

### build blockchain（please confirm the ports of 30300~30302，20200~20202，8545~
→˓8547 are not occupied）
### The difference right here is that the parameter "-s MySQL" is appended to the
→˓command and the port is changed.
bash build_chain.sh -f ipconf -p 30300,20200,8545 -s MySQL
==============================================================
Generating CA key...
==============================================================
Generating keys ...
Processing IP:127.0.0.1 Total:1 Agency:agencyA Groups:1
Processing IP:127.0.0.1 Total:1 Agency:agencyB Groups:1,2
Processing IP:127.0.0.1 Total:1 Agency:agencyC Groups:2
==============================================================
Generating configurations...
Processing IP:127.0.0.1 Total:1 Agency:agencyA Groups:1
Processing IP:127.0.0.1 Total:1 Agency:agencyB Groups:1,2
Processing IP:127.0.0.1 Total:1 Agency:agencyC Groups:2
==============================================================
Group:1 has 2 nodes
Group:2 has 2 nodes

Modify node ini file

In group.[group].ini configuration file, the configuration information of MySQL is related to this feature. Suppose
that the MySQL configuration information is as follows:

|node|db_ip|db_port|db_username|db_passwd|db_name|
|Group1_A|127.0.0.1|3306|root|123456|db_Group1_A|
|Group1_B|127.0.0.1|3306|root|123456|db_Group1_B|
|Group2_B|127.0.0.1|3306|root|123456|db_Group2_B|
|Group2_C|127.0.0.1|3306|root|123456|db_Group2_C|

Modify the group.1.ini configuration in node0

Modify the content in the section ~/fisco/nodes/127.0.0.1/node0/conf/group.1.ini[storage] and add the following
content. Db_passwd is the corresponding password.

db_ip=127.0.0.1
db_port=3306
db_username=root
db_name=db_Group1_A
db_passwd=

Modify the group.1.ini configuration in node1

Modify the content in the section ~/fisco/nodes/127.0.0.1/node1/conf/group.1.ini[storage] and add the following
content. Db_passwd is the corresponding password.

db_ip=127.0.0.1
db_port=3306
db_username=root
db_name=db_Group1_B
db_passwd=

6.12. Distributed storage 135



FISCO BCOS EN Documentation, Release v2.2.0

Modify the group.2.ini configuration in node1

Modify the content in the section ~/fisco/nodes/127.0.0.1/node1/conf/group.2.ini[storage] and add the following
content. Db_passwd is the corresponding password.

db_ip=127.0.0.1
db_port=3306
db_username=root
db_name=db_Group2_B
db_passwd=

Modify the group.2.ini configuration in node2

Modify the content in the section ~/fisco/nodes/127.0.0.1/node2/conf/group.2.ini[storage] and add the following
content. Db_passwd is the corresponding password.

db_ip=127.0.0.1
db_port=3306
db_username=root
db_name=db_Group2_C
db_passwd=

Start node

cd ~/fisco/nodes/127.0.0.1;sh start_all.sh

Check process

ps -ef|grep fisco-bcos|grep -v grep
fisco 111061 1 0 16:22 pts/0 00:00:04 /data/home/fisco/nodes/127.0.0.1/
→˓node2/../fisco-bcos -c config.ini
fisco 111065 1 0 16:22 pts/0 00:00:04 /data/home/fisco/nodes/127.0.0.1/
→˓node0/../fisco-bcos -c config.ini
fisco 122910 1 1 16:22 pts/0 00:00:02 /data/home/fisco/nodes/127.0.0.1/
→˓node1/../fisco-bcos -c config.ini

If it starts successfully, you can see there are 3 fisco-bcos processes. If it fails, please refer to the log to confirm
whether the configuration is correct.

Check output of log

Execute the following command to view the number of nodes connected to node0 (similar to other nodes)

tail -f nodes/127.0.0.1/node0/log/log* | grep connected

Normally, you will see an output similar to the following, and you can see that node0 is connecting to the other
two nodes from it.

info|2019-05-28 16:28:57.267770|[P2P][Service] heartBeat,connected count=2
info|2019-05-28 16:29:07.267935|[P2P][Service] heartBeat,connected count=2
info|2019-05-28 16:29:17.268163|[P2P][Service] heartBeat,connected count=2
info|2019-05-28 16:29:27.268284|[P2P][Service] heartBeat,connected count=2
info|2019-05-28 16:29:37.268467|[P2P][Service] heartBeat,connected count=2

Execute the following command to check if it is in consensus

136 Chapter 6. Manual (Revision in progress)



FISCO BCOS EN Documentation, Release v2.2.0

tail -f nodes/127.0.0.1/node0/log/log* | grep +++

Normally, the output will continue to output ++++Generating seal to indicate that the consensus is normal.

info|2019-05-28 16:26:32.454059|[g:1][CONSENSUS][SEALER]++++++++++++++++
→˓Generating seal on,blkNum=28,tx=0,nodeIdx=3,hash=c9c859d5...
info|2019-05-28 16:26:36.473543|[g:1][CONSENSUS][SEALER]++++++++++++++++
→˓Generating seal on,blkNum=28,tx=0,nodeIdx=3,hash=6b319fa7...
info|2019-05-28 16:26:40.498838|[g:1][CONSENSUS][SEALER]++++++++++++++++
→˓Generating seal on,blkNum=28,tx=0,nodeIdx=3,hash=2164360f...

Send transaction by console

Prepare dependence

cd ~/fisco;
bash <(curl -S https://raw.githubusercontent.com/FISCO-BCOS/console/master/tools/
→˓download_console.sh)
cp -n console/conf/applicationContext-sample.xml console/conf/applicationContext.
→˓xml
cp nodes/127.0.0.1/sdk/* console/conf/

Modify configuration file

Modify ~/fisco/console/conf/applicationContext.xml to the following configuration (partial information)

<bean id="groupChannelConnectionsConfig" class="org.fisco.bcos.channel.handler.
→˓GroupChannelConnectionsConfig">

<property name="allChannelConnections">
<list>

<bean id="group1" class="org.fisco.bcos.channel.handler.
→˓ChannelConnections">

<property name="groupId" value="1" />
<property name="connectionsStr">
<list>

<value>127.0.0.1:20200</value>
</list>

</property>
</bean>

</list>
</property>

</bean>

Start console

cd ~/fisco/console
sh start.sh 1
#deploy TableTest contract
[group:1]> deploy TableTest
contract address:0x8c17cf316c1063ab6c89df875e96c9f0f5b2f744

view the table in the database

MySQL -uroot -p123456 -A db_Group1_A
use db_Group1_A;

(continues on next page)

6.12. Distributed storage 137



FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

show tables;
----------------------------------------------------------+
| Tables_in_db_Group1_A |
+----------------------------------------------------------+
| _contract_data_8c17cf316c1063ab6c89df875e96c9f0f5b2f744_ |
| _contract_data_f69a2fa2eca49820218062164837c6eecc909abd_ |
| _sys_block_2_nonces_ |
| _sys_cns_ |
| _sys_config_ |
| _sys_consensus_ |
| _sys_current_state_ |
| _sys_hash_2_block_ |
| _sys_number_2_hash_ |
| _sys_table_access_ |
| _sys_tables_ |
| _sys_tx_hash_2_block_ |
+----------------------------------------------------------+
12 rows in set (0.02 sec)

call the create interface in the console

#create table
call TableTest 0x8c17cf316c1063ab6c89df875e96c9f0f5b2f744 create
0xab1160f0c8db2742f8bdb41d1d76d7c4e2caf63b6fdcc1bbfc69540a38794429

view the table in the database

show tables;
+----------------------------------------------------------+
| Tables_in_db_Group1_A |
+----------------------------------------------------------+
| _contract_data_8c17cf316c1063ab6c89df875e96c9f0f5b2f744_ |
| _contract_data_f69a2fa2eca49820218062164837c6eecc909abd_ |
| _sys_block_2_nonces_ |
| _sys_cns_ |
| _sys_config_ |
| _sys_consensus_ |
| _sys_current_state_ |
| _sys_hash_2_block_ |
| _sys_number_2_hash_ |
| _sys_table_access_ |
| _sys_tables_ |
| _sys_tx_hash_2_block_ |
| _user_t_test |
+----------------------------------------------------------+

Inserting a record to the database

#insert data into the table
call TableTest 0x8c17cf316c1063ab6c89df875e96c9f0f5b2f744 insert "fruit" 100 "apple
→˓"
0x082ca6a5a292f1f7b20abeb3fb03f45e0c6f48b5a79cc65d1246bfe57be358d1

open the MySQL client and query the_user_t_test table data

#view data in the user table
select * from _user_t_test\G;

*************************** 1. row ***************************
_id_: 31

_hash_: 0a0ed3b2b0a227a6276114863ef3e8aa34f44e31567a5909d1da0aece31e575e
_num_: 3

(continues on next page)

138 Chapter 6. Manual (Revision in progress)



FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

_status_: 0
name: fruit

item_id: 100
item_name: apple
1 row in set (0.00 sec)

6.12.3 Access MySQL through proxy

This operation tutorial is only valid for the 2.1.0 or newer node version.If you need to build a distributed stor-
age environment in 2.0.0-rc3 or 2.0.0 through “accessing MySQL through proxy”, please refer to the document
Distributed Storage Building Method If you need to build a distributed storage environment in 2.0.0-rc2 through
“accessing MySQL through proxy”, please refer to the document Distributed Storage Building Method

Important: The type MySQL is recommended.

Logical architecture diagram

Multi-group architecture means that blockchain node supports starting multiple groups, and the transaction pro-
cessing, data storage, and block consensus among the groups are isolated from each other. Therefore, each node
in the group corresponds to an AMDB instance. For example, in blockchain network, there are three nodes A,
B, and C, where A and B belong to group1, and B and C belong to group2. NodeA and NodeC correspond to
one database instance respectively, and NodeB corresponds to two database instances. The logical architecture
diagram is as follows:

As shown in the above figure, NodeB belongs to multiple groups. The AMDB server and MySQL which are
corresponded by the same node in different groups are separate. For distinguishing the same node in different
groups, the nodes of A, B, and C are respectively represented with Group1_A (NodeA in Group1, same as below),
Group1_B, Group2_B, and Group2_C.

We use the above figure as an example to describe the setup configuration process in following.

6.12. Distributed storage 139

https://fisco-bcos-documentation.readthedocs.io/zh_CN/v2.0.0/docs/manual/distributed_storage.html
https://fisco-bcos-documentation.readthedocs.io/zh_CN/v2.0.0-rc2/docs/manual/amdbconfig.html


FISCO BCOS EN Documentation, Release v2.2.0

Build nodes

Before configuring the AMDB service, you need to complete the establishment of alliance chain and the configu-
ration of multiple groups. For details, refer to the following steps.

Prepare dependence

• create folder

mkdir -p ~/fisco && cd ~/fisco

• get build_chain script

curl -LO https://github.com/FISCO-BCOS/FISCO-BCOS/releases/download/v2.2.0/build_
→˓chain.sh && chmod u+x build_chain.sh

Generate configuration file

# generate blockchain configuration file ipconf
cat > ipconf << EOF
127.0.0.1:1 agencyA 1
127.0.0.1:1 agencyB 1,2
127.0.0.1:1 agencyC 2
EOF

# view configuration file
cat ipconf
127.0.0.1:1 agencyA 1
127.0.0.1:1 agencyB 1,2
127.0.0.1:1 agencyC 2

Build blockchain with build_chain

### build blockchain（please confirm the ports of 30300~30302，20200~20202，8545~
→˓8547 are not occupied）

bash build_chain.sh -f ipconf -p 30300,20200,8545
==============================================================
Generating CA key...
==============================================================
Generating keys ...
Processing IP:127.0.0.1 Total:1 Agency:agencyA Groups:1
Processing IP:127.0.0.1 Total:1 Agency:agencyB Groups:1,2
Processing IP:127.0.0.1 Total:1 Agency:agencyC Groups:2
==============================================================
Generating configurations...
Processing IP:127.0.0.1 Total:1 Agency:agencyA Groups:1
Processing IP:127.0.0.1 Total:1 Agency:agencyB Groups:1,2
Processing IP:127.0.0.1 Total:1 Agency:agencyC Groups:2
==============================================================
Group:1 has 2 nodes
Group:2 has 2 nodes

Modify node ini file

140 Chapter 6. Manual (Revision in progress)



FISCO BCOS EN Documentation, Release v2.2.0

Modify the group.1.ini configuration in node0

Modify the contents of the [storage] section in the ~/fisco/nodes/127.0.0.1/node0/conf/group.1.ini file, and set as
following

[storage]
type=external
topic=DB_Group1_A
max_retry=100

Modify the group.1.ini configuration in node1

Modify the contents of the [storage] section in the ~/fisco/nodes/127.0.0.1/node1/conf/group.1.ini file, and set as
following

[storage]
type=external
topic=DB_Group1_B
max_retry=100

Modify the group.2.ini configuration in node1

Modify the contents of the [storage] section in the ~/fisco/nodes/127.0.0.1/node1/conf/group.2.ini file, and set as
following

[storage]
type=external
topic=DB_Group2_B
max_retry=100

Modify the group.2.ini configuration in node2

Modify the contents of the [storage] section in the ~/fisco/nodes/127.0.0.1/node2/conf/group.2.ini file, and set as
following

[storage]
type=external
topic=DB_Group2_C
max_retry=100

Prepare amdb proxy

Get source code

cd ~/fisco;
git clone https://github.com/FISCO-BCOS/amdb-proxy.git

Compile source code

cd AMDB;gradle build

After the compilation is completed, a dist directory is generated, and the file structure is as follows:

6.12. Distributed storage 141



FISCO BCOS EN Documentation, Release v2.2.0

apps
AMDB.jar

conf
applicationContext.xml
contracts

Table.sol
TableTest.sol

doc
amop.png
leveldb.png
README.md

log4j2.xml
mappers

data_mapper.xml
lib
log
start.sh

Configure amdb proxy

In the connection process between AMDB and node, AMDB is client and node is server. During the startup
process, AMDB service is active to connect to node, and node only needs to configure topic of AMDB attention.
For topic introduction, please refer to AMOP. AMDB needs to pass by the certificate access.

Certificate configuration

cp ~/fisco/nodes/127.0.0.1/sdk/* ~/fisco/AMDB/dist/conf/

amdb instance copy

cd ~/fisco;
###dist_Group1_A is the amdb instance corresponding to the node Group1_A
cp AMDB/dist/ dist_Group1_A -R
###dist_Group1_B is the amdb instance corresponding to the node Group1_B
cp AMDB/dist/ dist_Group1_B -R
###dist_Group2_B is the amdb instance corresponding to the node Group2_B
cp AMDB/dist/ dist_Group2_B -R
###dist_Group2_C is the amdb instance corresponding to the node Group2_C
cp AMDB/dist/ dist_Group2_C -R

After the above steps, you can see the file structure of ~/fisco directory as follows:

drwxrwxr-x 8 fisco fisco 4096 May 7 15:53 AMDB
-rwxrw-r-- 1 fisco fisco 37539 May 7 14:58 build_chain.sh
drwxrwxr-x 5 fisco fisco 4096 May 7 15:58 dist_Group1_A
drwxrwxr-x 5 fisco fisco 4096 May 7 15:58 dist_Group1_B
drwxrwxr-x 5 fisco fisco 4096 May 7 15:59 dist_Group2_B
drwxrwxr-x 5 fisco fisco 4096 May 7 15:59 dist_Group2_C
-rw-rw-r-- 1 fisco fisco 68 May 7 14:59 ipconf
drwxrwxr-x 4 fisco fisco 4096 May 7 15:08 nodes

142 Chapter 6. Manual (Revision in progress)



FISCO BCOS EN Documentation, Release v2.2.0

DB creation

MySQL -uroot -p123456
CREATE DATABASE `bcos_Group1_A`;
CREATE DATABASE `bcos_Group1_B`;
CREATE DATABASE `bcos_Group2_B`;
CREATE DATABASE `bcos_Group2_C`;

File configuration

Here we assume that the MySQL configuration information is as follows:

|node|db_ip|db_port|db_username|db_passwd|db_name|
|Group1_A|127.0.0.1|3306|root|123456|bcos_Group1_A|
|Group1_B|127.0.0.1|3306|root|123456|bcos_Group1_B|
|Group2_B|127.0.0.1|3306|root|123456|bcos_Group2_B|
|Group2_C|127.0.0.1|3306|root|123456|bcos_Group2_C|

We need to modify applicationContext.xml in configuration process,we need to modify topic configuration
node.topic, MySQL configuration items db.ip、db.port、db. Database、 db.user and db.password.

Configure amdb proxy for Group1’s NodeA

modify ~/fisco/dist_Group1_A/conf/applicationContext.xml to the following configuration (partial information)

<bean id="groupChannelConnectionsConfig" class="org.fisco.bcos.channel.handler.
→˓GroupChannelConnectionsConfig">

<property name="allChannelConnections">
<list>

<bean id="group1" class="org.fisco.bcos.channel.handler.
→˓ChannelConnections">

<property name="groupId" value="1" />
<property name="connectionsStr">
<list>

<value>127.0.0.1:20200</value>
</list>

</property>
</bean>

</list>
</property>

</bean>
<bean id="DBChannelService" class="org.fisco.bcos.channel.client.Service">

<property name="groupId" value="1" />
<property name="orgID" value="fisco" />
<property name="allChannelConnections" ref=

→˓"groupChannelConnectionsConfig"></property>
<property name="topics">

<list>
<value>DB_Group1_A</value>

</list>
</property>

<property name="pushCallback" ref="DBHandler"/>
</bean>
<!-- database connection configuration -->

<bean id="dataSource" class="org.apache.commons.dbcp2.BasicDataSource">
<property name="driverClassName" value="com.mysql.jdbc.Driver" />
<!-- please configure db connection here-->
<property name="url" value="jdbc:mysql://127.0.0.1:3306/bcos_Group1_A?

→˓characterEncoding=UTF-8&amp;zeroDateTimeBehavior=convertToNull" />
(continues on next page)

6.12. Distributed storage 143



FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

<property name="username" value="root" />
<property name="password" value="123456" />

</bean>

Configure amdb proxy for Group1’s NodeB

modify ~/fisco/dist_Group1_B/conf/applicationContext.xml to the following configuration (partial information)

<bean id="groupChannelConnectionsConfig" class="org.fisco.bcos.channel.handler.
→˓GroupChannelConnectionsConfig">

<property name="allChannelConnections">
<list>

<bean id="group1" class="org.fisco.bcos.channel.handler.
→˓ChannelConnections">

<property name="groupId" value="1" />
<property name="connectionsStr">
<list>

<value>127.0.0.1:20201</value>
</list>

</property>
</bean>

</list>
</property>

</bean>

<bean id="DBChannelService" class="org.fisco.bcos.channel.client.Service">
<property name="groupId" value="1" />
<property name="orgID" value="fisco" />
<property name="allChannelConnections" ref=

→˓"groupChannelConnectionsConfig"></property>
<property name="topics">

<list>
<value>DB_Group1_B</value>

</list>
</property>

<property name="pushCallback" ref="DBHandler"/>
</bean>

<!-- database connection configuration -->
<bean id="dataSource" class="org.apache.commons.dbcp2.BasicDataSource">
<property name="driverClassName" value="com.mysql.jdbc.Driver" />
<!-- please configure db connection here-->
<property name="url" value="jdbc:mysql://127.0.0.1:3306/bcos_Group1_B?

→˓characterEncoding=UTF-8&amp;zeroDateTimeBehavior=convertToNull" />
<property name="username" value="root" />
<property name="password" value="123456" />

</bean>

Configure amdb proxy for Group2’s NodeB

configure ~/fisco/dist_Group2_B/conf/amdb.properties as following content: modify
~/fisco/dist_Group2_B/conf/applicationContext.xml to the following configuration (partial information)

<bean id="groupChannelConnectionsConfig" class="org.fisco.bcos.channel.handler.
→˓GroupChannelConnectionsConfig">

<property name="allChannelConnections">
<list>

(continues on next page)

144 Chapter 6. Manual (Revision in progress)



FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

<bean id="group2" class="org.fisco.bcos.channel.handler.
→˓ChannelConnections">

<property name="groupId" value="2" />
<property name="connectionsStr">
<list>

<value>127.0.0.1:20201</value>
</list>

</property>
</bean>

</list>
</property>

</bean>

<bean id="DBChannelService" class="org.fisco.bcos.channel.client.Service">
<property name="groupId" value="2" />
<property name="orgID" value="fisco" />
<property name="allChannelConnections" ref=

→˓"groupChannelConnectionsConfig"></property>

<!-- communication topic configuration of the node -->
<property name="topics">

<list>
<value>DB_Group2_B</value>

</list>
</property>
<property name="pushCallback" ref="DBHandler"/>

</bean>
<!-- database connection configuration -->

<bean id="dataSource" class="org.apache.commons.dbcp2.BasicDataSource">
<property name="driverClassName" value="com.mysql.jdbc.Driver" />
<!-- please configure db connection here-->
<property name="url" value="jdbc:mysql://127.0.0.1:3306/bcos_Group2_B?

→˓characterEncoding=UTF-8&amp;zeroDateTimeBehavior=convertToNull" />
<property name="username" value="root" />
<property name="password" value="123456" />

</bean>

Configure amdb proxy for Group2’s NodeC

modify ~/fisco/dist_Group2_C/conf/applicationContext.xml to the following configuration (partial information)

<bean id="groupChannelConnectionsConfig" class="org.fisco.bcos.channel.handler.
→˓GroupChannelConnectionsConfig">

<property name="allChannelConnections">
<list>

<bean id="group2" class="org.fisco.bcos.channel.handler.
→˓ChannelConnections">

<property name="groupId" value="2" />
<property name="connectionsStr">
<list>

<value>127.0.0.1:20202</value>
</list>

</property>
</bean>

</list>
</property>

</bean>

<bean id="DBChannelService" class="org.fisco.bcos.channel.client.Service">

(continues on next page)

6.12. Distributed storage 145



FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

<property name="groupId" value="2" />
<property name="orgID" value="fisco" />
<property name="allChannelConnections" ref=

→˓"groupChannelConnectionsConfig"></property>

<!-- communication topic configuration of the node -->
<property name="topics">

<list>
<value>DB_Group2_C</value>

</list>
</property>

<property name="pushCallback" ref="DBHandler"/>
</bean>

<!-- database connection configuration -->
<bean id="dataSource" class="org.apache.commons.dbcp2.BasicDataSource">
<property name="driverClassName" value="com.mysql.jdbc.Driver" />
<!-- please configure db connection here-->
<property name="url" value="jdbc:mysql://jdbc:mysql://127.0.0.1:3306/bcos_

→˓Group2_C?characterEncoding=UTF-8&amp;zeroDateTimeBehavior=convertToNull" />
<property name="username" value="root" />
<property name="password" value="123456" />

</bean>

Start amdb proxy

cd ~/fisco/dist_Group1_A;sh start.sh
cd ~/fisco/dist_Group1_B;sh start.sh
cd ~/fisco/dist_Group2_B;sh start.sh
cd ~/fisco/dist_Group2_C;sh start.sh

Start nodes

cd ~/fisco/nodes/127.0.0.1;sh start_all.sh

Check process

ps -ef|grep org.bcos.amdb.server.Main|grep -v grep
fisco 110734 1 1 17:25 ? 00:00:10 java -cp conf/:apps/*:lib/* org.
→˓bcos.amdb.server.Main
fisco 110778 1 1 17:25 ? 00:00:11 java -cp conf/:apps/*:lib/* org.
→˓bcos.amdb.server.Main
fisco 110803 1 1 17:25 ? 00:00:10 java -cp conf/:apps/*:lib/* org.
→˓bcos.amdb.server.Main
fisco 122676 1 16 17:38 ? 00:00:08 java -cp conf/:apps/*:lib/* org.
→˓bcos.amdb.server.Main

ps -ef|grep fisco-bcos|grep -v grep
fisco 111061 1 0 17:25 pts/0 00:00:04 /data/home/fisco/nodes/127.0.0.1/
→˓node2/../fisco-bcos -c config.ini
fisco 111065 1 0 17:25 pts/0 00:00:04 /data/home/fisco/nodes/127.0.0.1/
→˓node0/../fisco-bcos -c config.ini
fisco 122910 1 1 17:38 pts/0 00:00:02 /data/home/fisco/nodes/127.0.0.1/
→˓node1/../fisco-bcos -c config.ini

146 Chapter 6. Manual (Revision in progress)



FISCO BCOS EN Documentation, Release v2.2.0

If it starts successfully, you can see there are 4 jave processes and 3 fisco-bcos processes. If it fails, please refer to
the log to confirm whether the configuration is correct.

Check the output of log

Execute the following command to view the number of nodes connected to node0 (other nodes are similar)

tail -f nodes/127.0.0.1/node0/log/log* | grep connected

Normally, you will see an output similar to the following, and you can see that node0 is connecting to the other
two nodes from it.

info|2019-05-07 21:47:22.849910| [P2P][Service] heartBeat connected count,size=2
info|2019-05-07 21:47:32.849970| [P2P][Service] heartBeat connected count,size=2
info|2019-05-07 21:47:42.850024| [P2P][Service] heartBeat connected count,size=2

Execute the following command to check if it is in consensus

tail -f nodes/127.0.0.1/node0/log/log* | grep +++

Normally, the output will continue to output ++++Generating seal to indicate that the consensus is normal.

info|2019-05-07 21:48:54.942111| [g:1][p:65544][CONSENSUS][SEALER]++++++++++++++++
→˓Generating seal on,blkNum=6,tx=0,nodeIdx=1,hash=355790f7...
info|2019-05-07 21:48:56.946022| [g:1][p:65544][CONSENSUS][SEALER]++++++++++++++++
→˓Generating seal on,blkNum=6,tx=0,nodeIdx=1,hash=4ef772bb...
info|2019-05-07 21:48:58.950222| [g:1][p:65544][CONSENSUS][SEALER]++++++++++++++++
→˓Generating seal on,blkNum=6,tx=0,nodeIdx=1,hash=48341ee5...

Send transaction by console

Please refer to the section Sending Transaction by Console in “Node Direct Connection to MySQL”.

6.13 Group members management

FISCO BCOS introduces free nodes, observer nodes and consensus nodes which can be converted to each other
by the console.

• Group member

– Consensus nodes (Sealer)

– Observer nodes (Observer)

• Non-Group member

– Free nodes (The node waiting for joining the group)

6.13.1 Operation command

The console provides three commands of AddSealer, AddObserver, and RemoveNode to convert the specified
node to Sealer, Oberserver, and RemoveNode, and can use getSealerList, getObserverList, and getNodeIDList
to view the current list of Sealer, Observer, and other nodes.

• addSealer: to set the corresponding node as the Sealer according to the NodeID;

• addObserver: to set the corresponding node as the Observer according to the NodeID;

• removeNode: to set the corresponding node as the RemoveNode according to the NodeID;

6.13. Group members management 147

./distributed_storage.html#id12
../design/security_control/node_management.html#id6
./console.html#addSealer
./console.html#addObserver
./console.html#removenode
./console.html#getSealerlist
./console.html#getObserverlist
./console.html#getnodeidlist


FISCO BCOS EN Documentation, Release v2.2.0

• getSealerList: to view the Sealer in the group;

• getObserverList: to view the Observer in the group;

• getNodeIDList: to view the NodeID in the group;

For example, to convert the specified nodes to Sealer, Observer, and RemoveNode, the main operation commands
are as follows:

Important: Before accessing the node, please ensure that:

• Node ID exists and can execute cat that is getting from conf/node.nodeid in the node directory

• All Sealers are normal, and they will output +++ logs.

# to set the node in the ~/fisco/nodes/192.168.0.1/node0 directory
$ mkdir -p ~/fisco && cd ~/fisco

# to get Node ID (to set the directory as ~/nodes/192.168.0.1/node0/）
$ cat ~/fisco/nodes/192.168.0.1/node0/conf/node.nodeid
7a056eb611a43bae685efd86d4841bc65aefafbf20d8c8f6028031d67af27c36c5767c9c79cff201769ed80ff220b96953da63f92ae83554962dc2922aa0ef50

# to connect console (to set the console in the ~/fisco/console directory)
$ cd ~/fisco/console

$ bash start.sh

# to convert the specified node to Sealer
[group:1]> addSealer
→˓7a056eb611a43bae685efd86d4841bc65aefafbf20d8c8f6028031d67af27c36c5767c9c79cff201769ed80ff220b96953da63f92ae83554962dc2922aa0ef50
# to view the list of Sealer
[group:1]> getSealerList
[

7a056eb611a43bae685efd86d4841bc65aefafbf20d8c8f6028031d67af27c36c5767c9c79cff201769ed80ff220b96953da63f92ae83554962dc2922aa0ef50
]

# to convert the specified node to Observer
[group:1]> addObserver
→˓7a056eb611a43bae685efd86d4841bc65aefafbf20d8c8f6028031d67af27c36c5767c9c79cff201769ed80ff220b96953da63f92ae83554962dc2922aa0ef50

# to view the list of Observer
[group:1]> getObserverList
[

7a056eb611a43bae685efd86d4841bc65aefafbf20d8c8f6028031d67af27c36c5767c9c79cff201769ed80ff220b96953da63f92ae83554962dc2922aa0ef50
]

# to convert the specified node to removeNode
[group:1]> removeNode
→˓7a056eb611a43bae685efd86d4841bc65aefafbf20d8c8f6028031d67af27c36c5767c9c79cff201769ed80ff220b96953da63f92ae83554962dc2922aa0ef50

# to view the list of NodeID
[group:1]> getNodeIDList
[

7a056eb611a43bae685efd86d4841bc65aefafbf20d8c8f6028031d67af27c36c5767c9c79cff201769ed80ff220b96953da63f92ae83554962dc2922aa0ef50
]
[group:1]> getSealerList
[]
[group:1]> getObserverList
[]

148 Chapter 6. Manual (Revision in progress)



FISCO BCOS EN Documentation, Release v2.2.0

6.13.2 Operation cases

The following describes the operations of group expansion and node exit in detail with specific operation cases.
Group expansion is divided into two phases, namely adding nodes to the network and adding nodes to the
group. Also, node exit is divided into two phases, namely exiting node from the group and exiting node from
the network.

Operation methods

• Node configuration modification: After the node modifies its own configuration, it need to be restarted to
takes effect. The involved operations include network adding/exit and CA blacklist inclusion/removal.

• Transaction uploading to the chain: To modify the transaction, the configuration of group consensus is
needed, and the operation involves the modification of node type. The current sending transaction path is
the pre-compiled service interface provided by the console and SDK.

• RPC inquiry：To use the command curl to inquire the information on the chain, and the operation involves
the query of the group node.

Operation steps

In this section, the following figure is taken as an example to describe the operations of expansion and network
exit show above.

The dotted line indicates that network communication can be performed among nodes, and the solid line indicates
that nodes have group relationships base on the communication among nodes, and colors’ difference distinguish
different group relationships.

The below figure below shows a network with three groups of which Group3 has three nodes. Whether Group3
has intersection nodes with other groups does not affect the versatility of the following operation process.

The folder name of node 1 is node0, IP port 127.0.0.1:30400, the former 4 bytes of nodeID b231b309. . .

The folder name of node 2 is node1, IP port 127.0.0.1:30401, the former 4 bytes of nodeID aab37e73. . .

6.13. Group members management 149



FISCO BCOS EN Documentation, Release v2.2.0

The folder name of node 3 is node2, IP port 127.0.0.1:30402, the former 4 bytes of nodeID d6b01a96. . .

Node A to join the network

Background:

Node 3 is outside the network and wants to join it now.

Operation steps:

1 . enter nodes folder and execute gen_node_cert.sh to generate node folder. Here we name the folder as
node2, which contains conf/ folder;

# acquire script
$ curl -LO https://raw.githubusercontent.com/FISCO-BCOS/FISCO-BCOS/master/tools/
→˓gen_node_cert.sh && chmod u+x gen_node_cert.sh
# execute, -c is the ca route given when the node was generated, agency is the
→˓agency name, -o is the name of the node folder to be generated
$ ./gen_node_cert.sh -c nodes/cert/agency -o node2

2 . copy node 2 under nodes/127.0.0.1/, parallel with other node folder (node0, node1);

$ cp -r ./node2/ nodes/127.0.0.1/

3 . enter nodes/127.0.0.1/, copy node0/config.ini, node0/start.sh and node0/stop.sh to
node2 directory;

$ cd nodes/127.0.0.1/
$ cp node0/config.ini node0/start.sh node0/stop.sh node2/

4 . modify node2/config.ini. For [rpc] model, modify listen_ip, channel_listen_port and
jsonrpc_listen_port; for [p2p] model, modify listen_port and add its node information in node..

$ vim node2/config.ini
[rpc]

;rpc listen ip
listen_ip=127.0.0.1
;channelserver listen port
channel_listen_port=20302
;jsonrpc listen port
jsonrpc_listen_port=8647

[p2p]
;p2p listen ip
listen_ip=0.0.0.0
;p2p listen port
listen_port=30402
;nodes to connect
node.0=127.0.0.1:30400
node.1=127.0.0.1:30401
node.2=127.0.0.1:30402

5 . node 3 copies node1/conf/group.3.genesis(which contains initial list of group nodes) and node1/
conf/group.3.ini to node2/conf folder, without modification;

$ cp node1/conf/group.3.genesis node2/conf/
$ cp node1/conf/group.3.ini node2/conf/

6 . execute node2/start.sh and start node 3;

$ ./node2/start.sh

7 . confirm that node 3 is connected with node 1, 2, then it has joined the network now.

150 Chapter 6. Manual (Revision in progress)



FISCO BCOS EN Documentation, Release v2.2.0

# Open the DEBUG log to check the number and ID of nodes connected with node 2
# The following log information indicates that node 2 is connected with 2
→˓nodes(with the former 4 bytes being b231b309 and aab37e73)
$ tail -f node2/log/log* | grep P2P
debug|2019-02-21 10:30:18.694258| [P2P][Service] heartBeat ignore connected,
→˓endpoint=127.0.0.1:30400,nodeID=b231b309...
debug|2019-02-21 10:30:18.694277| [P2P][Service] heartBeat ignore connected,
→˓endpoint=127.0.0.1:30401,nodeID=aab37e73...
info|2019-02-21 10:30:18.694294| [P2P][Service] heartBeat connected count,size=2

- If CA whitelist is enabled, you should configure every nodeID into every nodes’ whitelist configuration and reload the configuration. Read “CA blacklist and whitelist” for more.

• The other configurations of config.ini copied from node 1 remain the same;

• Theoretically, node 1, 2 can accomplish the extension of node 3 without changing their p2p connecting
nodes list;

• The group to be chosen in step 5 are recommended to be the group to be joined by node 3;

• To keep in full connection status, we recommend users to add the information of node 3 to the p2p
connecting nodes list in config.ini of node 1, 2, and restart node 1, 2.

Node A to quit the network

Background:

Node 3 is in the network and connected with node 1, 2. Now node 3 needs to quit the network.

Operation steps:

1 . For node 3, clear up the P2P connecting nodes list, and restart node 3;

# execute under node 2
$ ./stop.sh
$ ./start.sh
nohup: appending output to ‘nohup.out’

2 . For node 1, 2, remove node 3 form their P2P connecting nodes list(if has), and restart node 1, 2;

3 . Confirm that node 3 has been disconnected with node 1, 2, and it has quitted the network now.

Note:

• node 3 has to quit the group before quitting the network, which is guaranteed by users and will not
be verified by the system;

• the networking process is started by nodes. If missing step 2, node 3 can still get the p2p connecting request
from node 1, 2 and start connection. It can be stopped by using CA blacklist.

• If CA whitelist is enabled, you should delete the node from every nodes’ whitelist configuration and reload
the configuration. Read “CA blacklist and whitelist” for more.

Node A to join a group

Background:

Group 3 contains node 1, 2, either generates block in turn. Now node 3 wants to join the group.

Operation steps:

1. Node 3 joins the network;

6.13. Group members management 151



FISCO BCOS EN Documentation, Release v2.2.0

2. Set node 3 as the consensus node using console addSealer according to the node ID;

3. check if the node ID of node 3 is included in the consensus nodes of group 3 through console getSealerList.
If is, then it has joined the group successfully.

Note:

• node ID of node 3 can be acquired through cat nodes/127.0.0.1/node2/conf/node.nodeid;

• the first start of node 3 will write the configured group node initial list to the node system list, when the
blocks stop synchronizing, the node system lists of each node are the same;

• node 3 needs to have access to the network before joining the group, which will be verified by the
system;

• the group fixed configuration file of node 3 should be the same with node 1, 2.

Node A to quit the group

Background:

Group 3 contains node 1, 2, 3, either of which generates block in turn. Now node 3 wants to quit the group.

Operation steps:

1. set node 3 as free node according to its ID using console removeNode;

2. check if the node ID of node 3 is included in the consensus nodes of group 3 through console getSealerList.
If not, then node 3 has quited the group.

Additional:

Note:

• node 3 can quit the group as a consensus node or observer node.

6.14 Permission control

This section will introduce the operations concerning permission control, for details please check Design of Per-
mission Control.

For the system is defaulted with no permission setting record, any account can perform permission setting. For
example, account 1 gives permission of contract deployment to itself, but account 2 also sets itself with permission
of contract deployment. So the setting of account 1 becomes meaningless for every other node can add permissions
freely. Therefore, before building consortium chain, confirming permission setting rules is needed. We can use
grantPermissionManager instruction to set manager account, that is to give some account access to permission
setting, which other accounts don’t have.

6.14.1 Operations

The operations concerning permission control of following functions are introduced in this section:

• Permission of chain manager

• Permission of system manager

• Permission of contract deployment and user table creation

• Permission of Contract deployment using CNS

152 Chapter 6. Manual (Revision in progress)

./permission_control.html#id6
./permission_control.html#id7
./permission_control.html#id8
./permission_control.html#cns


FISCO BCOS EN Documentation, Release v2.2.0

• Permission of node management

• Permission to modify system parameter

• Permission to write user table

6.14.2 Environment configuration

Configure and start the nodes and console of FISCO BCOS 2.0+. For reference please check Installation.

6.14.3 Tools for permission control

FISCO BCOS offers permission control of console commands (developers can call PermissionService API of
SDK API for permission control). The involved permission control commands are:

6.14.4 Permission control example

Console provides script get_account.sh to generate accounts. The account files will be stored in accounts
folder. Console can set active accounts. The operation method is introduced in Console tutorial. Therefore,
through console we can set account to experience permission control. For account safety, we will generate 3
PKCS12 account files under the root folder of console by get_account.sh script. Please remember the
password during generation. The 3 PKCS12 account files are:

# account 1
0x2c7f31d22974d5b1b2d6d5c359e81e91ee656252.p12
# account 2
0x7fc8335fec9da5f84e60236029bb4a64a469a021.p12
# account 3
0xd86572ad4c92d4598852e2f34720a865dd4fc3dd.p12

Now we can open 3 Linux terminal and log in console with the 3 accounts separately.

Log in with account 1:

$ ./start.sh 1 -p12 accounts/0x2c7f31d22974d5b1b2d6d5c359e81e91ee656252.p12

Log in with account 2:

$ ./start.sh 1 -p12 accounts/0x7fc8335fec9da5f84e60236029bb4a64a469a021.p12

Log in with account 3：

$ ./start.sh 1 -p12 accounts/0xd86572ad4c92d4598852e2f34720a865dd4fc3dd.p12

6.14.5 Grant permission of chain manager

The 3 accounts play 3 kinds of roles. Account 1 performs chain manager, account 2 performs system manager and
account 3 the regular account. Chain manager has permission for access control, namely granting permissions.
System manager can manager permissions related to system functions, each of which should be granted indepen-
dently, including deploying contract, creating user table, managing nodes and deploying contract with CNS and
modifying system parameter. Chain manager can grant other accounts to be chain manager or system manager, or
grant regular accounts to write table list.

Initial status of chain contains no permission records. Now, we can enter the console of account 1 and set itself as
the chain manager, so other accounts are regular accounts.

6.14. Permission control 153

./permission_control.html#id9
./permission_control.html#id10
./permission_control.html#id11
../sdk/sdk.html#permissionservice
./console.html#id11


FISCO BCOS EN Documentation, Release v2.2.0

[group:1]> grantPermissionManager 0x2c7f31d22974d5b1b2d6d5c359e81e91ee656252
{

"code":0,
"msg":"success"

}

[group:1]> listPermissionManager
-----------------------------------------------------------------------------------
→˓----------
| address | enable_num
→˓ |
| 0x2c7f31d22974d5b1b2d6d5c359e81e91ee656252 | 1
→˓ |
-----------------------------------------------------------------------------------
→˓----------

Account 1 is set as the chain manager.

6.14.6 Grant permission of system manager

Grant permission to deploy contract and create user table

Account 1 grants permission of system manager to account 2. At first, grant account 2 with permission to deploy
contract and create user table.

[group:1]> grantDeployAndCreateManager 0x7fc8335fec9da5f84e60236029bb4a64a469a021
{

"code":0,
"msg":"success"

}

[group:1]> listDeployAndCreateManager
-----------------------------------------------------------------------------------
→˓----------
| address | enable_num
→˓ |
| 0x7fc8335fec9da5f84e60236029bb4a64a469a021 | 2
→˓ |
-----------------------------------------------------------------------------------
→˓----------

Log in console with account 2 and deploy TableTest contract offered by console. Code of TableTest.sol contract
is here. The CRUD operations of user table t_test are also provided.

[group:1]> deploy TableTest.sol
contract address:0xfe649f510e0ca41f716e7935caee74db993e9de8

Call create API of TableTest to create user table t_test.

[group:1]> call TableTest.sol 0xfe649f510e0ca41f716e7935caee74db993e9de8 create
transaction hash:0x67ef80cf04d24c488d5f25cc3dc7681035defc82d07ad983fbac820d7db31b5b
-----------------------------------------------------------------------------------
→˓----------
Event logs
-----------------------------------------------------------------------------------
→˓----------
createResult index: 0
count = 0
-----------------------------------------------------------------------------------
→˓----------

154 Chapter 6. Manual (Revision in progress)

smart_contract.html#solidity


FISCO BCOS EN Documentation, Release v2.2.0

User table t_test is created successfully.

Log in console with account 3 and deploy TableTest contract.

[group:1]> deploy TableTest.sol
{

"code":-50000,
"msg":"permission denied"

}

Account 3 fails to deploy contract as it has no permission.

• Note: deploying contract and creating user table are “2-in-1” control items. When using CRUD contracts,
we suggest to create the needed tables (creating tables in building function of contract) when deploying
contract, otherwise “table-missing” error may occur when reading or writing table. If it is needed to dy-
namically create table, the permission should be granted to minority accounts, otherwise there will be many
invalid tables on blockchain.

Grant permission to deploy contract using CNS

Console provides 3 commands involving CNS:

Note: permission of deployByCNS command is controllable and needs permission to deploy contract and use
CNS at the same time, permissions of callByCNS and queryCNS commands are not controllable.

Log in console with account 1, grant account 2 with permission to deploy contract using CNS.

[group:1]> grantCNSManager 0x7fc8335fec9da5f84e60236029bb4a64a469a021
{

"code":0,
"msg":"success"

}

[group:1]> listCNSManager
-----------------------------------------------------------------------------------
→˓----------
| address | enable_num
→˓ |
| 0x7fc8335fec9da5f84e60236029bb4a64a469a021 | 13
→˓ |
-----------------------------------------------------------------------------------
→˓----------

Log in console with account 2, deploy contract using CNS

[group:1]> deployByCNS TableTest.sol 1.0
contract address:0x24f902ff362a01335db94b693edc769ba6226ff7

[group:1]> queryCNS TableTest.sol
-----------------------------------------------------------------------------------
→˓----------
| version | address
→˓ |
| 1.0 |
→˓0x24f902ff362a01335db94b693edc769ba6226ff7 |
-----------------------------------------------------------------------------------
→˓----------

Log in console with account 3, deploy contract using CNS

[group:1]> deployByCNS TableTest.sol 2.0
{

(continues on next page)

6.14. Permission control 155



FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

"code":-50000,
"msg":"permission denied"

}

[group:1]> queryCNS TableTest.sol
-----------------------------------------------------------------------------------
→˓----------
| version | address
→˓ |
| 1.0 |
→˓0x24f902ff362a01335db94b693edc769ba6226ff7 |
-----------------------------------------------------------------------------------
→˓----------

Account 3 fails to deploy contract by CNS due to lack of permission

Grant permission to manage nodes

Console provides 5 commands related to node type management:

• Note: permissions of addSealer, addObserver and removeNode commands are controllable, while permis-
sions of getSealerList and getObserverList commands are not.

Log in console with account 1, grant account 2 with permission to manage nodes.

[group:1]> grantNodeManager 0x7fc8335fec9da5f84e60236029bb4a64a469a021
{

"code":0,
"msg":"success"

}

[group:1]> listNodeManager
-----------------------------------------------------------------------------------
→˓----------
| address | enable_num
→˓ |
| 0x7fc8335fec9da5f84e60236029bb4a64a469a021 | 20
→˓ |
-----------------------------------------------------------------------------------
→˓----------

Log in console with account 2, view consensus node list.

[group:1]> getSealerList
[

→˓01cd46feef2bb385bf03d1743c1d1a52753129cf092392acb9e941d1a4e0f499fdf6559dfcd4dbf2b3ca418caa09d953620c2aa3c5bbe93ad5f6b378c678489e,
→˓

→˓279c4adfd1e51e15e7fbd3fca37407db84bd60a6dd36813708479f31646b7480d776b84df5fea2f3157da6df9cad078c28810db88e8044741152eb037a19bc17,
→˓

→˓320b8f3c485c42d2bfd88bb6bb62504a9433c13d377d69e9901242f76abe2eae3c1ca053d35026160d86db1a563ab2add127f1bbe1ae96e7d15977538d6c0fb4,
→˓

→˓c26dc878c4ff109f81915accaa056ba206893145a7125d17dc534c0ec41c6a10f33790ff38855df008aeca3a27ae7d96cdcb2f61eb8748fefe88de6412bae1b5
]

View observer node list:

156 Chapter 6. Manual (Revision in progress)



FISCO BCOS EN Documentation, Release v2.2.0

[group:1]> getObserverList
[]

Set the first node ID as the observer node:

[group:1]> addObserver
→˓01cd46feef2bb385bf03d1743c1d1a52753129cf092392acb9e941d1a4e0f499fdf6559dfcd4dbf2b3ca418caa09d953620c2aa3c5bbe93ad5f6b378c678489e
{

"code":0,
"msg":"success"

}

[group:1]> getObserverList
[

→˓01cd46feef2bb385bf03d1743c1d1a52753129cf092392acb9e941d1a4e0f499fdf6559dfcd4dbf2b3ca418caa09d953620c2aa3c5bbe93ad5f6b378c678489e
]

[group:1]> getSealerList
[

→˓279c4adfd1e51e15e7fbd3fca37407db84bd60a6dd36813708479f31646b7480d776b84df5fea2f3157da6df9cad078c28810db88e8044741152eb037a19bc17,
→˓

→˓320b8f3c485c42d2bfd88bb6bb62504a9433c13d377d69e9901242f76abe2eae3c1ca053d35026160d86db1a563ab2add127f1bbe1ae96e7d15977538d6c0fb4,
→˓

→˓c26dc878c4ff109f81915accaa056ba206893145a7125d17dc534c0ec41c6a10f33790ff38855df008aeca3a27ae7d96cdcb2f61eb8748fefe88de6412bae1b5
]

Log in console with account 3, add observer node to consensus node list.

[group:1]> addSealer
→˓01cd46feef2bb385bf03d1743c1d1a52753129cf092392acb9e941d1a4e0f499fdf6559dfcd4dbf2b3ca418caa09d953620c2aa3c5bbe93ad5f6b378c678489e
{

"code":-50000,
"msg":"permission denied"

}

[group:1]> getSealerList
[

→˓279c4adfd1e51e15e7fbd3fca37407db84bd60a6dd36813708479f31646b7480d776b84df5fea2f3157da6df9cad078c28810db88e8044741152eb037a19bc17,
→˓

→˓320b8f3c485c42d2bfd88bb6bb62504a9433c13d377d69e9901242f76abe2eae3c1ca053d35026160d86db1a563ab2add127f1bbe1ae96e7d15977538d6c0fb4,
→˓

→˓c26dc878c4ff109f81915accaa056ba206893145a7125d17dc534c0ec41c6a10f33790ff38855df008aeca3a27ae7d96cdcb2f61eb8748fefe88de6412bae1b5
]

[group:1]> getObserverList
[

→˓01cd46feef2bb385bf03d1743c1d1a52753129cf092392acb9e941d1a4e0f499fdf6559dfcd4dbf2b3ca418caa09d953620c2aa3c5bbe93ad5f6b378c678489e
]

Account 3 fails to add consensus node for lack of permission to manage nodes. Now only account 2 has permission
to add observer node to consensus node list.

6.14. Permission control 157



FISCO BCOS EN Documentation, Release v2.2.0

Grant permission to modify system parameter

Console provides 2 commands about system parameter modification:

• Note: currently we support system parameter setting with key tx_count_limit or tx_gas_limit. Permission of
setSystemConfigByKey command is controllable, while permission of getSystemConfigByKey command
is not.

Log in console with account 1, grant account 2 with permission to modify system parameter.

[group:1]> grantSysConfigManager 0x7fc8335fec9da5f84e60236029bb4a64a469a021
{

"code":0,
"msg":"success"

}

[group:1]> listSysConfigManager
-----------------------------------------------------------------------------------
→˓----------
| address | enable_num
→˓ |
| 0x7fc8335fec9da5f84e60236029bb4a64a469a021 | 23
→˓ |
-----------------------------------------------------------------------------------
→˓----------

Log in console with account 2, modify the value of system parameter tx_count_limit to 2000.

[group:1]> getSystemConfigByKey tx_count_limit
1000

[group:1]> setSystemConfigByKey tx_count_limit 2000
{

"code":0,
"msg":"success"

}

[group:1]> getSystemConfigByKey tx_count_limit
2000

Log in console with account 3, modify value of parameter tx_count_limit to 3000.

[group:1]> setSystemConfigByKey tx_count_limit 3000
{

"code":-50000,
"msg":"permission denied"

}

[group:1]> getSystemConfigByKey tx_count_limit
2000

Account 3 fails to set parameter due to no permission.

6.14.7 Grant permission to write user table

Account 1 can grant account 3 with permission to write user table t_test.

[group:1]> grantUserTableManager t_test 0xd86572ad4c92d4598852e2f34720a865dd4fc3dd
{

"code":0,
"msg":"success"

(continues on next page)

158 Chapter 6. Manual (Revision in progress)



FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

}
[group:1]> listUserTableManager t_test
-----------------------------------------------------------------------------------
→˓----------
| address | enable_num
→˓ |
| 0xd86572ad4c92d4598852e2f34720a865dd4fc3dd | 6
→˓ |
-----------------------------------------------------------------------------------
→˓----------

Log in console with account 3, insert a record in user table t_test and inquire the records.

[group:1]> call TableTest.sol 0xfe649f510e0ca41f716e7935caee74db993e9de8 insert
→˓"fruit" 1 "apple"

transaction hash:0xc4d261026851c3338f1a64ecd4712e5fc2a028c108363181725f07448b986f7e
-----------------------------------------------------------------------------------
→˓----------
Event logs
-----------------------------------------------------------------------------------
→˓----------
InsertResult index: 0
count = 1
-----------------------------------------------------------------------------------
→˓----------

[group:1]> call TableTest.sol 0xfe649f510e0ca41f716e7935caee74db993e9de8 select
→˓"fruit"
[[fruit], [1], [apple]]

Log in console with account 2, update the record inserted by account 3 and inquire the records.

[group:1]> call TableTest.sol 0xfe649f510e0ca41f716e7935caee74db993e9de8 update
→˓"fruit" 1 "orange"
{

"code":-50000,
"msg":"permission denied"

}
[group:1]> call TableTest.sol 0xfe649f510e0ca41f716e7935caee74db993e9de8 select
→˓"fruit"
[[fruit], [1], [apple]]

Account 2 fails to update information for it has no permission to write user table t_test.

• Account 1 revoke permission of account 3 to write user table t_test.

[group:1]> revokeUserTableManager t_test 0xd86572ad4c92d4598852e2f34720a865dd4fc3dd
{

"code":0,
"msg":"success"

}

[group:1]> listUserTableManager t_test
Empty set.

Revoked successfully.

• Note: now there is no account with permission to write user table t_test, so it is back to initial status, that
is, all accounts have permission to write table. Therefore, account 1 can grant another account, like account
2, with permission to write this table.

6.14. Permission control 159



FISCO BCOS EN Documentation, Release v2.2.0

6.15 CA blacklist and whitelist

This documents tells you how to use CA blacklist and whitelist. Read the design of CA blacklist and whitelist for
more.

6.15.1 CA blacklist

Use blacklist to reject connection coming from certain NodeIDs.

Configure blacklist

Modify config.ini

[certificate_blacklist]
; crl.0 should be nodeid, nodeid's length is 128
;crl.0=

Restart the node.

$ bash stop.sh && bash start.sh

Check connections.

$ curl -X POST --data '{"jsonrpc":"2.0","method":"getPeers","params":[1],"id":1}'
→˓http://127.0.0.1:8545 |jq

6.15.2 CA whitelist

Use whitelist to reject all connections which NodeID is not belong to whitelist.

Configure whitelist

Modifyconfig.ini，If whitelist is empty, the whitelist is disable and accept all connections.

[certificate_whitelist]
; cal.0 should be nodeid, nodeid's length is 128
cal.

→˓0=7718df20f0f7e27fdab97b3d69deebb6e289b07eb7799c7ba92fe2f43d2efb4c1250dd1f11fa5b5ce687c8283d65030aae8680093275640861bc274b1b2874cb
cal.

→˓1=f306eb1066ceb9d46e3b77d2833a1bde2a9899cfc4d0433d64b01d03e79927aa60a40507c5739591b8122ee609cf5636e71b02ce5009f3b8361930ecc3a9abb0

If the node is not started, use start.sh. The whitelist configuration is loaded during starting up. If the node has
started, use reload_whitelist.sh . The whitelist configureation is refresh and reject disconnect the node
not belongs to whitelist.

# If the node is not started.
$ bash start.sh
# If the node is started.
$ cd scripts
$ bash reload_whitelist.sh
node_127.0.0.1_30300 is not running, use start.sh to start and enable whitelist
→˓directlly.

Check connections.

$ curl -X POST --data '{"jsonrpc":"2.0","method":"getPeers","params":[1],"id":1}'
→˓http://127.0.0.1:8545 |jq

160 Chapter 6. Manual (Revision in progress)



FISCO BCOS EN Documentation, Release v2.2.0

6.15.3 Usage: Public CA

If we build chain using the certificate coming from CFCA. This chain’s CA is CFCA. This CA is public and can
be used to build by other blockchain. Cause different chain can connect each other by using a same CA. In this
case, we need to use whitelist to reject the connection coming from other blockchain.

Build chain an enable whitelist

1. Build chain.

2. Get every nodes’ NodeID.

3. Add every nodes’ NodeID into every Node’s whitelist.

4. Start the node or use reload_whitelist.sh to reconfigure whitelist.

Add node in blockchain and update whitelist

1. Build a node based on a blockchain.

2. Get NodeID of new node.

3. Append new node’s NodeID into every Node’s whitelist.

4. Copy old node’s whitelist to new node.

5. Reconfigure whitelist using reload_whitelist.sh.

6. Start new node.

7. Add new node into group (addSealer or addObserver)

6.15.4 Examples

Build blockchain

Build a blockchain contains 4 nodes.

$ bash build_chain.sh -l "127.0.0.1:4"

Get NodeIDs of these nodes.

$ cat node*/conf/node.nodeid
219b319ba7b2b3a1ecfa7130ea314410a52c537e6e7dda9da46dec492102aa5a43bad81679b6af0cd5b9feb7cfdc0b395cfb50016f56806a2afc7ee81bbb09bf
7718df20f0f7e27fdab97b3d69deebb6e289b07eb7799c7ba92fe2f43d2efb4c1250dd1f11fa5b5ce687c8283d65030aae8680093275640861bc274b1b2874cb
f306eb1066ceb9d46e3b77d2833a1bde2a9899cfc4d0433d64b01d03e79927aa60a40507c5739591b8122ee609cf5636e71b02ce5009f3b8361930ecc3a9abb0
38158ef34eb2d58ce1d31c8f3ef9f1fa829d0eb8ed1657f4b2a3ebd3265d44b243c69ffee0519c143dd67e91572ea8cb4e409144a1865f3e980c22d33d443296

The NodeIDs are：

• node0: 219b319b. . . .

• node1: 7718df20. . . .

• node2: f306eb10. . . .

• node3: 38158ef3. . . .

Start all nodes.

$ cd node/127.0.0.1/
$ bash start_all.sh

Check connections. Use node0 as example. (8545 is the rpc port of node0).

$ curl -X POST --data '{"jsonrpc":"2.0","method":"getPeers","params":[1],"id":1}'
→˓http://127.0.0.1:8545 |jq

6.15. CA blacklist and whitelist 161



FISCO BCOS EN Documentation, Release v2.2.0

We can see, node0 has connected with 3 nodes.

{
"id": 1,
"jsonrpc": "2.0",
"result": [
{

"Agency": "agency",
"IPAndPort": "127.0.0.1:62774",
"Node": "node3",
"NodeID":

→˓"38158ef34eb2d58ce1d31c8f3ef9f1fa829d0eb8ed1657f4b2a3ebd3265d44b243c69ffee0519c143dd67e91572ea8cb4e409144a1865f3e980c22d33d443296
→˓",

"Topic": []
},
{

"Agency": "agency",
"IPAndPort": "127.0.0.1:62766",
"Node": "node1",
"NodeID":

→˓"7718df20f0f7e27fdab97b3d69deebb6e289b07eb7799c7ba92fe2f43d2efb4c1250dd1f11fa5b5ce687c8283d65030aae8680093275640861bc274b1b2874cb
→˓",

"Topic": []
},
{

"Agency": "agency",
"IPAndPort": "127.0.0.1:30302",
"Node": "node2",
"NodeID":

→˓"f306eb1066ceb9d46e3b77d2833a1bde2a9899cfc4d0433d64b01d03e79927aa60a40507c5739591b8122ee609cf5636e71b02ce5009f3b8361930ecc3a9abb0
→˓",

"Topic": []
}

]
}

Use blacklist: Reject connection from node1 to node0

Add node1’s NodeID into node0’s config.ini.

vim node0/config.ini

Like (Let whitelist empty):

[certificate_blacklist]
; crl.0 should be nodeid, nodeid's length is 128
crl.

→˓0=7718df20f0f7e27fdab97b3d69deebb6e289b07eb7799c7ba92fe2f43d2efb4c1250dd1f11fa5b5ce687c8283d65030aae8680093275640861bc274b1b2874cb

[certificate_whitelist]
; cal.0 should be nodeid, nodeid's length is 128
; cal.0=

Restart to enable.

$ cd node0
$ bash stop.sh && bash start.sh

Check connections.

162 Chapter 6. Manual (Revision in progress)



FISCO BCOS EN Documentation, Release v2.2.0

$ curl -X POST --data '{"jsonrpc":"2.0","method":"getPeers","params":[1],"id":1}'
→˓http://127.0.0.1:8545 |jq

We can see node0 has connected with 2 nodes. Haven’t connected with node1.

{
"id": 1,
"jsonrpc": "2.0",
"result": [
{

"Agency": "agency",
"IPAndPort": "127.0.0.1:30303",
"Node": "node3",
"NodeID":

→˓"38158ef34eb2d58ce1d31c8f3ef9f1fa829d0eb8ed1657f4b2a3ebd3265d44b243c69ffee0519c143dd67e91572ea8cb4e409144a1865f3e980c22d33d443296
→˓",

"Topic": []
},
{

"Agency": "agency",
"IPAndPort": "127.0.0.1:30302",
"Node": "node2",
"NodeID":

→˓"f306eb1066ceb9d46e3b77d2833a1bde2a9899cfc4d0433d64b01d03e79927aa60a40507c5739591b8122ee609cf5636e71b02ce5009f3b8361930ecc3a9abb0
→˓",

"Topic": []
}

]
}

Use whitelist: Reject all connection except node1 and node 2

Add NodeIDs of node1 and node2 into node0’s config.ini.

$ vim node0/config.ini

Let blacklist empty and add NodeIDs of node1 and node2 into whitelist

[certificate_blacklist]
; crl.0 should be nodeid, nodeid's length is 128
;crl.0=

[certificate_whitelist]
; cal.0 should be nodeid, nodeid's length is 128
cal.

→˓0=7718df20f0f7e27fdab97b3d69deebb6e289b07eb7799c7ba92fe2f43d2efb4c1250dd1f11fa5b5ce687c8283d65030aae8680093275640861bc274b1b2874cb
cal.

→˓1=f306eb1066ceb9d46e3b77d2833a1bde2a9899cfc4d0433d64b01d03e79927aa60a40507c5739591b8122ee609cf5636e71b02ce5009f3b8361930ecc3a9abb0

Restart the node.

$ bash stop.sh && bash start.sh

Check connections.

$ curl -X POST --data '{"jsonrpc":"2.0","method":"getPeers","params":[1],"id":1}'
→˓http://127.0.0.1:8545 |jq

We can see, the node0 has connected with 2 nodes, not connected with node1.

6.15. CA blacklist and whitelist 163



FISCO BCOS EN Documentation, Release v2.2.0

{
"id": 1,
"jsonrpc": "2.0",
"result": [
{

"Agency": "agency",
"IPAndPort": "127.0.0.1:30302",
"Node": "node2",
"NodeID":

→˓"f306eb1066ceb9d46e3b77d2833a1bde2a9899cfc4d0433d64b01d03e79927aa60a40507c5739591b8122ee609cf5636e71b02ce5009f3b8361930ecc3a9abb0
→˓",

"Topic": []
},
{

"Agency": "agency",
"IPAndPort": "127.0.0.1:30301",
"Node": "node1",
"NodeID":

→˓"7718df20f0f7e27fdab97b3d69deebb6e289b07eb7799c7ba92fe2f43d2efb4c1250dd1f11fa5b5ce687c8283d65030aae8680093275640861bc274b1b2874cb
→˓",

"Topic": []
}

]
}

Use blacklist and whitelist: The priority of blacklist is higher than whitelist

Modify config.ini of node0.

$ vim node0/config.ini

Add node1 into blacklist and add node1, node2 into whitelist. Both blacklist and whitelist has configured node1.

[certificate_blacklist]
; crl.0 should be nodeid, nodeid's length is 128
crl.

→˓0=7718df20f0f7e27fdab97b3d69deebb6e289b07eb7799c7ba92fe2f43d2efb4c1250dd1f11fa5b5ce687c8283d65030aae8680093275640861bc274b1b2874cb

[certificate_whitelist]
; cal.0 should be nodeid, nodeid's length is 128
cal.

→˓0=7718df20f0f7e27fdab97b3d69deebb6e289b07eb7799c7ba92fe2f43d2efb4c1250dd1f11fa5b5ce687c8283d65030aae8680093275640861bc274b1b2874cb
cal.

→˓1=f306eb1066ceb9d46e3b77d2833a1bde2a9899cfc4d0433d64b01d03e79927aa60a40507c5739591b8122ee609cf5636e71b02ce5009f3b8361930ecc3a9abb0

Restart the node.

$ bash stop.sh && bash start.sh

Check connections.

$ curl -X POST --data '{"jsonrpc":"2.0","method":"getPeers","params":[1],"id":1}'
→˓http://127.0.0.1:8545 |jq

We can see. Although node1 has been added into whitelist, node0 hasn’t connected with node1. Because node1
has also added into blacklist. The priority of blacklist is higher than whitelist.

{
"id": 1,
"jsonrpc": "2.0",

(continues on next page)

164 Chapter 6. Manual (Revision in progress)



FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

"result": [
{

"Agency": "agency",
"IPAndPort": "127.0.0.1:30302",
"Node": "node2",
"NodeID":

→˓"f306eb1066ceb9d46e3b77d2833a1bde2a9899cfc4d0433d64b01d03e79927aa60a40507c5739591b8122ee609cf5636e71b02ce5009f3b8361930ecc3a9abb0
→˓",

"Topic": []
}

]
}

6.16 AMOP

6.16.1 Introduction

Advanced Messages Onchain Protocol (AMOP) aims to provide a secure and efficient message channel for alliance
chain. Each agency in the alliance chain can use AMOP to communicate as long as they deploy blockchain nodes,
whether they are Sealer or Observer. AMOP has the following advantages:

• Real-time: AMOP messages do not rely on blockchain transactions and consensus. Messages are transmit-
ted in real time among nodes with a milliseconds delay.

• Reliability: When AMOP message is transmitting, it can automatically search all feasible link in blockchain
network for communication. As long as at least one link is available, the message is guaranteed to be
reachable.

• Efficiency: The AMOP message has simple structure and efficient processing logic. AMOP message’s
simple structure and efficient processing logic makes it to fully utilize network bandwidth and require a
small amount of CPU usage only.

• Security: All communication links of AMOP use SSL encryption. The encryption algorithm is config-
urable,and the topic supports identity authentication mechanism.

• Easy to use: No additional configuration is required in SDK when using AMOP.

6.16. AMOP 165



FISCO BCOS EN Documentation, Release v2.2.0

6.16.2 Logical architecture

We take the typical IDC architecture of the bank as the example to overview each region:

• SF region: The business service region inside the agency. The business subsystem in this region uses
blockchain SDK. the configured SDK connects to the blockchain node.

• Blockchain P2P network: This is a logical region and deployed blockchain nodes of each agency.
Blockchain nodes can also be deployed inside the agency.

6.16.3 Configuration

AMOP does not require any additional configuration. The following is a configuration case for [Web3SDK]
(./configuration.md) . SDK configuration（Spring Bean）：

<?xml version="1.0" encoding="UTF-8" ?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:p="http://www.
→˓springframework.org/schema/p"
xmlns:tx="http://www.springframework.org/schema/tx" xmlns:aop="http://www.

→˓springframework.org/schema/aop"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd

http://www.springframework.org/schema/tx
http://www.springframework.org/schema/tx/spring-tx-2.5.xsd

http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop-2.5.xsd">

<!-- AMOP message processing pool configuration, which can be configured according
→˓to actual needs -->
<bean id="pool" class="org.springframework.scheduling.concurrent.
→˓ThreadPoolTaskExecutor">
<property name="corePoolSize" value="50" />
<property name="maxPoolSize" value="100" />
<property name="queueCapacity" value="500" />
<property name="keepAliveSeconds" value="60" />
<property name="rejectedExecutionHandler">
<bean class="java.util.concurrent.ThreadPoolExecutor.AbortPolicy" />

(continues on next page)

166 Chapter 6. Manual (Revision in progress)



FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

</property>
</bean>

<!-- group information configuration -->
<bean id="groupChannelConnectionsConfig" class="org.fisco.bcos.channel.handler.

→˓GroupChannelConnectionsConfig">
<property name="allChannelConnections">

<list>
<bean id="group1" class="org.fisco.bcos.channel.handler.

→˓ChannelConnections">
<property name="groupId" value="1" />
<property name="connectionsStr">
<list>
<value>127.0.0.1:20200</value> <!-- format：IP:port -->
<value>127.0.0.1:20201</value>

</list>
</property>

</bean>
</list>

</property>
</bean>

<!-- blockchain node information configuration -->
<bean id="channelService" class="org.fisco.bcos.channel.client.Service"

→˓depends-on="groupChannelConnectionsConfig">
<property name="groupId" value="1" />
<property name="orgID" value="fisco" />
<property name="allChannelConnections" ref="groupChannelConnectionsConfig"></

→˓property>
<!-- If you want to enable topic authentication, please uncomment the

→˓following configuration. -->
<!-- <property name="topic2KeyInfo" ref="amopVerifyTopicToKeyInfo"></

→˓property>-->
</bean>

<!-- If you want to enable topic authentication, please uncomment the following
→˓configuration. -->
<!--
<bean class="org.fisco.bcos.channel.handler.AMOPVerifyTopicToKeyInfo" id=

→˓"amopVerifyTopicToKeyInfo">
<property name="topicToKeyInfo">

<map>
<entry key="${topicname}" value-ref=

→˓"AMOPVerifyKeyInfo_${topicname}" />
</map>

</property>
</bean>
-->

<!-- If you are a topic producer, you need to configure the publicKey property.
Each authenticated consumer holds a different public-private key

→˓pair.
Please list the public key files of all the authenticated

→˓consumers.
-->

<!--
<bean class="org.fisco.bcos.channel.handler.AMOPVerifyKeyInfo" id=

→˓"AMOPVerifyKeyInfo_${topicname}">
<property name="publicKey">

<list>
<value>classpath:$consumer_public_key_1.pem$</

→˓value> (continues on next page)

6.16. AMOP 167



FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

<value>classpath:$consumer_public_key_2.pem$</
→˓value>

</list>
</property>

</bean>
-->

<!-- If you are a topic consumer, you need to configure the privateKey property.
This private key will authenticate you to the corresponding topic

→˓producer.
-->

<!--
<bean class="org.fisco.bcos.channel.handler.AMOPVerifyKeyInfo" id=

→˓"AMOPVerifyKeyInfo_${topicname}">
<property name="privateKey" value="classpath:$consumer_private_key.

→˓pem$"></property>
</bean>
-->

6.16.4 SDK uses

AMOP’s messaging is based on the topic mechanism. A topic is set in a server first. When a client sends a message
to the topic, the server can receive soon. AMOP supports multiple topic for messaging in the same blockchain
network. Topic supports any number of servers and clients. When multiple servers follow on the same topic, the
topic messages are randomly sent to one of available servers.

Server code:

package org.fisco.bcos.channel.test.amop;

import org.fisco.bcos.channel.client.Service;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;

import java.util.HashSet;
import java.util.Set;

public class Channel2Server {
static Logger logger = LoggerFactory.getLogger(Channel2Server.class);

public static void main(String[] args) throws Exception {
if (args.length < 1) {
System.out.println("Param: topic");
return;

}

String topic = args[0];

logger.debug("init Server");

ApplicationContext context = new ClassPathXmlApplicationContext(
→˓"classpath:applicationContext.xml");

Service service = context.getBean(Service.class);

// set topic to support multiple topic
Set<String> topics = new HashSet<String>();
topics.add(topic);
service.setTopics(topics);

(continues on next page)

168 Chapter 6. Manual (Revision in progress)



FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

// PushCallback class, is used to handles messages. see the Callback code.
PushCallback cb = new PushCallback();
service.setPushCallback(cb);

System.out.println("3s...");
Thread.sleep(1000);
System.out.println("2s...");
Thread.sleep(1000);
System.out.println("1s...");
Thread.sleep(1000);

System.out.println("start test");
System.out.println(

→˓"===================================================================");

// launch service
service.run();

}
}

The server’s PushCallback class case:

package org.fisco.bcos.channel.test.amop;

import java.time.LocalDateTime;
import java.time.format.DateTimeFormatter;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import org.fisco.bcos.channel.client.ChannelPushCallback;
import org.fisco.bcos.channel.dto.ChannelPush;
import org.fisco.bcos.channel.dto.ChannelResponse;

class PushCallback extends ChannelPushCallback {
static Logger logger = LoggerFactory.getLogger(PushCallback2.class);

// onPush method is called when an AMOP message is received.
@Override
public void onPush(ChannelPush push) {

DateTimeFormatter df = DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss");
logger.debug("push:" + push.getContent());

System.out.println(df.format(LocalDateTime.now()) + "server:push:" + push.
→˓getContent());

// respond message
ChannelResponse response = new ChannelResponse();
response.setContent("receive request seq:" + String.valueOf(push.

→˓getMessageID()));
response.setErrorCode(0);

push.sendResponse(response);
}

}

client case:

package org.fisco.bcos.channel.test.amop;

(continues on next page)

6.16. AMOP 169



FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

import java.time.LocalDateTime;
import java.time.format.DateTimeFormatter;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;

import org.fisco.bcos.channel.client.Service;
import org.fisco.bcos.channel.dto.ChannelRequest;
import org.fisco.bcos.channel.dto.ChannelResponse;

public class Channel2Client {
static Logger logger = LoggerFactory.getLogger(Channel2Client.class);

public static void main(String[] args) throws Exception {
if(args.length < 2) {

System.out.println("param: target topic total number of request");
return;

}

String topic = args[0];
Integer count = Integer.parseInt(args[1]);
DateTimeFormatter df = DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss");

ApplicationContext context = new ClassPathXmlApplicationContext(
→˓"classpath:applicationContext.xml");

Service service = context.getBean(Service.class);
service.run();

System.out.println("3s ...");
Thread.sleep(1000);
System.out.println("2s ...");
Thread.sleep(1000);
System.out.println("1s ...");
Thread.sleep(1000);

System.out.println("start test");
System.out.println(

→˓"===================================================================");
for (Integer i = 0; i < count; ++i) {
Thread.sleep(2000); // It needs to take time to establish a connection.

→˓If you send a message immediately, it will fail.

ChannelRequest request = new ChannelRequest();
request.setToTopic(topic); // set the message topic
request.setMessageID(service.newSeq()); // The message sequence number.

→˓When you need to uniquely identify a message, you can use newSeq() to generate
→˓randomly.

request.setTimeout(5000); // Message timeout

request.setContent("request seq:" + request.getMessageID()); // The
→˓message content is sent

System.out.println(df.format(LocalDateTime.now()) + " request seq:" +
→˓String.valueOf(request.getMessageID())

+ ", Content:" + request.getContent());

ChannelResponse response = service.sendChannelMessage2(request); //
→˓send message

(continues on next page)

170 Chapter 6. Manual (Revision in progress)



FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

System.out.println(df.format(LocalDateTime.now()) + "response seq:" +
→˓String.valueOf(response.getMessageID())

+ ", ErrorCode:" + response.getErrorCode() + ", Content:" +
→˓response.getContent());

}
}

}

6.16.5 Test

After completing the configuration as described above, user can specify a topic: topic and execute the following
two commands for testing.

Unicast text

Launch AMOP server:

java -cp 'conf/:apps/*:lib/*' org.fisco.bcos.channel.test.amop.Channel2Server
→˓[topic]

Launch AMOP client:

java -cp 'conf/:apps/*:lib/*' org.fisco.bcos.channel.test.amop.Channel2Client
→˓[topic] [Number of messages]

In addition to supporting unicast text, AMOP also supports sending binary data, multicast, and authentication
mechanisms. The corresponding test commands are as follows:

Unicast binary，，，multicast text，，，multicast binary

Launch AMOP server:

java -cp 'conf/:apps/*:lib/*' org.fisco.bcos.channel.test.amop.Channel2Server
→˓[topic]

Launch AMOP client:

#unicast binary
java -cp 'conf/:apps/*:lib/*' org.fisco.bcos.channel.test.amop.Channel2ClientBin
→˓[topic] [filename]
#multicast text
java -cp 'conf/:lib/*:apps/*' org.fisco.bcos.channel.test.amop.Channel2ClientMulti
→˓[topic] [Number of messages]
#multicast binary
java -cp 'conf/:lib/*:apps/*' org.fisco.bcos.channel.test.amop.
→˓Channel2ClientMultiBin [topic] [filename]

Unicast text and binary,multicast text and binary with authentication mechanisms

Launch AMOP server:

java -cp 'conf/:apps/*:lib/*' org.fisco.bcos.channel.test.amop.
→˓Channel2ServerNeedVerify [topic]

启动AMOP客户端：

6.16. AMOP 171



FISCO BCOS EN Documentation, Release v2.2.0

#Unicast text with authentication mechanisms
java -cp 'conf/:apps/*:lib/*' org.fisco.bcos.channel.test.amop.
→˓Channel2ClientNeedVerify [topic] [Number of messages]
#Unicast binary with authentication mechanisms
java -cp 'conf/:apps/*:lib/*' org.fisco.bcos.channel.test.amop.
→˓Channel2ClientBinNeedVerify [topic] [filename]
#multicast text with authentication mechanisms
java -cp 'conf/:lib/*:apps/*' org.fisco.bcos.channel.test.amop.
→˓Channel2ClientMultiNeedVerify [topic] [Number of messages]
#multicast binary with authentication mechanisms
java -cp 'conf/:lib/*:apps/*' org.fisco.bcos.channel.test.amop.
→˓Channel2ClientMultiBinNeedVerify [topic] [filename]

6.16.6 Error code

• 99:message failed to be sent. After AMOP attempts to send message by all the links, the message is not
sent to the server. It is recommended to use seq that is generated during the transmission to check the
processing status of each node on the link.

• 100：message failed to be sent. After AMOP attempts to send message by all the links, the message is
not sent to the node from one node by P2P. It is recommended to use seq that is generated during the
transmission to check the processing status of each node on the link.

• 101：message failed to be sent. After AMOP attempts to send message by all the links, the message is not
sent to the sdk from node. It is recommended to use seq that is generated during the transmission to check
the processing status of each node on the link.

• 102: message times out. It is recommended to check whether the server has processed the message correctly
and the bandwidth is sufficient.

6.17 Storage security

The data of the alliance chain is only visible to members of the alliance. Disk encryption ensures the security
of the data running on the alliance chain on the hard disk. Once the hard drive is taken out from the intranet
environment of alliance chain, the data will not be decrypted.

Disk encryption encrypts the content stored on the hard disk by the node. The encrypted content includes: the
data of the contract and the private key of the node.

For specific disk encryption introduction, please refer to: Introduction of Disk Encryption

6.17.1 Key Manager deployment

Each agency has a Key Manager. For specific deployment steps, please refer to Key Manager README

6.17.2 Node building

Use the script [build_chain.sh] (../installation.md) to build a node with normal operations.

curl -LO https://github.com/FISCO-BCOS/FISCO-BCOS/releases/download/`curl -s
→˓https://api.github.com/repos/FISCO-BCOS/FISCO-BCOS/releases | grep "\"v2\.[0-9]\.
→˓[0-9]\"" | sort -u | tail -n 1 | cut -d \" -f 4`/build_chain.sh && chmod u+x
→˓build_chain.sh

bash build_chain.sh -l "127.0.0.1:4" -p 30300,20200,8545

172 Chapter 6. Manual (Revision in progress)

https://github.com/FISCO-BCOS/key-manager


FISCO BCOS EN Documentation, Release v2.2.0

Important: The node cannot be launched until the dataKey is configured. Before the node runs for the first time,
it must be configured to use the disk encryption or not. Once the node starts running, it cannot be switched its
state.

6.17.3 Key Manager launch

To launch key-manager directly. If key-manager is not deployed, refer to Key Manager README Intro-
duction.

# parameter: port，superkey
./key-manager 31443 123xyz

launch successfully and print the log.

[1546501342949][TRACE][Load]key-manager started,port=31443

6.17.4 DataKey configuration

Important: The node configured by the dataKey must be newly generated node and has not been launched.

To execute the script, define dataKey, and get cipherDataKey

cd key-manager/scripts
bash gen_data_secure_key.sh 127.0.0.1 31443 123456

CiherDataKey generated: ed157f4588b86d61a2e1745efe71e6ea
Append these into config.ini to enable disk encryption:
[storage_security]
enable=true
key_manager_ip=127.0.0.1
key_manager_port=31443
cipher_data_key=ed157f4588b86d61a2e1745efe71e6ea

The script for getting cipherDataKey automatically prints out the ini config-
uration required for the disk encryption (see below). Now, the cipherDataKey
is:cipher_data_key=ed157f4588b86d61a2e1745efe71e6ea

To write the ini configuration that has been disk encryption to the node configuration file (config.ini).

vim nodes/127.0.0.1/node0/config.ini

To put it at last like this.

[storage_security]
enable=true
key_manager_ip=127.0.0.1
key_manager_port=31443
cipher_data_key=ed157f4588b86d61a2e1745efe71e6ea

6.17.5 Encrypted node private key

To execute script and encrypt node private key

6.17. Storage security 173

https://github.com/FISCO-BCOS/key-manager
https://github.com/FISCO-BCOS/key-manager


FISCO BCOS EN Documentation, Release v2.2.0

cd key-manager/scripts
# parameter:ip port node private key file cipherDataKey
bash encrypt_node_key.sh 127.0.0.1 31443 ../../nodes/127.0.0.1/node0/conf/node.key
→˓ed157f4588b86d61a2e1745efe71e6ea

The node private key is automatically encrypted after execution, and the files before encryption is backed up to the
file node.key.bak.xxxxxx. Please take care of the backup private key and delete the backup private
key generated on the node

[INFO] File backup to "nodes/127.0.0.1/node0/conf/node.key.bak.1546502474"
[INFO] "nodes/127.0.0.1/node0/conf/node.key" encrypted!

If you check the node.key, you can see that it has been encrypted as ciphertext.

8b2eba71821a5eb15b0cbe710e96f23191419784f644389c58e823477cf33bd73a51b6f14af368d4d3ed647d9de6818938ded7b821394446279490b537d04e7a7e87308b66fc82ab3987fb9f3c7079c2477ed4edaf7060ae151f237b466e4f3f8a19be268af65d7b4ae8be37d81810c30a0f00ec7146a1125812989c2205e1e37375bc5e4654e569c21f0f59b3895b137f3ede01714e2312b74918e2501ac6568ffa3c10ae06f7ce1cbb38595b74783af5fea7a8a735309db3e30c383e4ed1abd8ca37e2aa375c913e3d049cb439f01962dd2f24b9e787008c811abd9a92cfb7b6c336ed78d604a3abe3ad859932d84f11506565f733d244f75c9687ef9334b8fabe139a82e9640db9e956b540f8b61675d04c3fb070620c7c135f3f4f6319aae8b6df2b091949a2c9938e5c1e5bb13c0f530764b7c2a884704637be953ce887

Important: All files that need to be encrypted are listed below. If they are not encrypted, the node cannot be
launched.

• standard version: conf/node.key

• national cryptography version: conf/gmnode.key和conf/origin_cert/node.key

6.17.6 Node running

to launch node directly

cd nodes/127.0.0.1/node0/
./start.sh

6.17.7 Correct judgment

(1) The node runs and generates block normally, and the block information is continuously output.

tail -f nodes/127.0.0.1/node0/log/* | grep +++

(2) key-manager will print a log each time the node launches. For example, when a node launches, the log
directly output by Key Manager is as follows.

[1546504272699][TRACE][Dec]Respond
{

"dataKey" : "313233343536",
"error" : 0,
"info" : "success"

}

6.18 OSCCA-approved cryptography

For fully supporting the OSCCA-approved cryptography algorithm, FISCO integrates the national encryption,
decryption, signature, verification, hash algorithm and SSL communication protocol in the FISCO BCOS platform
based on the OSCCA-approved cryptography standard. The design documents can be found in the FISCO BCOS
Design Manual. OSCCA-approved cryptography Version.

174 Chapter 6. Manual (Revision in progress)



FISCO BCOS EN Documentation, Release v2.2.0

6.18.1 Initial deployment of FISCO BCOS OSCCA-approved cryptography ver-
sion

This section uses the [build_chain] (build_chain.md) script to build a 4-nodes FISCO BCOS chain locally,
and uses Ubuntu 16.04 system as an example to operate. This section uses pre-compiled static fisco-bcos
binaries for testing on CentOS 7 and Ubuntu 16.04.

# rely on the installation of Ubuntu16
$ sudo apt install -y openssl curl
# prepare environment
$ cd ~ && mkdir -p fisco && cd fisco
# download build_chain.sh script
$ curl -LO https://github.com/FISCO-BCOS/FISCO-BCOS/releases/download/v2.2.0/build_
→˓chain.sh && chmod u+x build_chain.sh

After performing the above steps, the structure in the fisco directory is as follows:

fisco
bin

fisco-bcos
build_chain.sh

• build a 4-nodes FISCO BCOS chain

# Generate a 4-nodes FISCO chain. All nodes belong to group1. The following
→˓instructions are executed in the fisco directory.
# -p specifies the starting ports which are p2p_port, channel_port, jsonrpc_port
# According to the following instructions, it needs to ensure that the 30300~30303,
→˓ 20200~20203, 8545~8548 ports of the machine are not occupied.
# -g The OSCCA-approved cryptography compilation option. It will generate a node
→˓of OSCCA-approved cryptography after using successfully. Download the latest
→˓version from GitHub by default.
$ ./build_chain.sh -l "127.0.0.1:4" -p 30300,20200,8545 -g

For the build_chain.sh script option, please [refer to here] (build_chain.md). The command that execute
normally will output All completed. (If there is no output, refer to nodes/build.log for checking).

[INFO] Downloading tassl binary ...
Generating CA key...
Generating Guomi CA key...
==============================================================
Generating keys ...
Processing IP:127.0.0.1 Total:4 Agency:agency Groups:1
==============================================================
Generating configurations...
Processing IP:127.0.0.1 Total:4 Agency:agency Groups:1
==============================================================
[INFO] FISCO-BCOS Path : bin/fisco-bcos
[INFO] Start Port : 30300 20200 8545
[INFO] Server IP : 127.0.0.1:4
[INFO] State Type : storage
[INFO] RPC listen IP : 127.0.0.1
[INFO] Output Dir : /mnt/c/Users/asherli/Desktop/key-manager/build/nodes
[INFO] CA Key Path : /mnt/c/Users/asherli/Desktop/key-manager/build/nodes/
→˓gmcert/ca.key
[INFO] Guomi mode : yes
==============================================================
[INFO] All completed. Files in /mnt/c/Users/asherli/Desktop/key-manager/build/nodes

After the deployment of the OSCCA-approved cryptography alliance chain is completed, the rest of operations
are same as [installation] (../installation.md).

6.18. OSCCA-approved cryptography 175



FISCO BCOS EN Documentation, Release v2.2.0

6.18.2 OSCCA-approved cryptography configuration information

The nodes of FISCO BCOS OSCCA-approved cryptography version message through using SSL secure channel.
The main configuration items of the SSL certificate are concentrated in the following configuration items:

[network_security]

data_path：path where the certificate file is located
key：the path of the node private key relative to the data_path
cert: the path of the certificate gmnode.crt relative to data_path
ca_cert: the path of certificate gmca

;certificate configuration
[network_security]

;directory the certificates located in
data_path=conf/
;the node private key file
key=gmnode.key
;the node certificate file
cert=gmnode.crt
;the ca certificate file
ca_cert=gmca.crt

6.18.3 using OSCCA-approved cryptography SDK

For details, refer to [SDK Documentation] (../sdk/sdk.html#id8).

6.18.4 OSCCA-approved cryptography console configuration

See [Console Operations Manual] (../manual/console.md) Configure OSCCA-approved cryptography
console chapter。

6.18.5 using OSCCA-approved cryptography console

The function of OSCCA-approved cryptography console is used in the same way as the standard console. See
[Console Operations Manual] (../manual/console.md).

6.18.6 OSCCA-approved cryptography configuration

OSCCA-approved cryptography Key Manager

Using the OSCCA-approved cryptography Key Manager needs to be recompiled the standard Key Manager. The
difference of them is -DBUILD_GM=ON option needs to be added when doing cmake.

# under centos
cmake3 .. -DBUILD_GM=ON
# under ubuntu
cmake .. -DBUILD_GM=ON

Other steps are same as the standard Key Manager. Please refer to key-manager repository.

OSCCA-approved cryptography node configuration

FISCO BCOS OSCCA-approved cryptography version adopts dual certificate mode, so two sets of certificates are
needed for disk encryption. They are the conf/gmnode.key and conf/origin_cert/node.key. Other operations of
disk encryption are the same as [Standard Edition Loading Encryption Operation] (./storage_security.md).

176 Chapter 6. Manual (Revision in progress)

https://github.com/FISCO-BCOS/key-manager


FISCO BCOS EN Documentation, Release v2.2.0

cd key-manager/scripts
#encrypt conf/gmnode.key parameter: ip port Node private key file cipherDataKey
bash encrypt_node_key.sh 127.0.0.1 31443 nodes/127.0.0.1/node0/conf/gmnode.key
→˓ed157f4588b86d61a2e1745efe71e6ea
#encrypt conf/origin_cert/node.key parameter: ip port Node private key file
→˓cipherDataKey
bash encrypt_node_key.sh 127.0.0.1 31443 nodes/127.0.0.1/node0/conf/origin_cert/
→˓node.key ed157f4588b86d61a2e1745efe71e6ea

Setup and deploy blockchain

• Getting Executables

– Download binary, use docker images and complie source code.

• Chain building script

– Options and node directory

• Certificate description

– Certificate format, role and generating process.

• Configuration files and configuration items

– All configure files’ options

• Deploy Multi-Group Blockchain System

– The guide of deploying Multi-Group Blockchain

• Distributed storage

– The guide of using distributed storage feature

Use Blockchain

• Console

– Configuration and options

• Manage blockchain accounts

– Account generation and using guide.

• SDK

– The SDK to call smart from outside

• AMOP

– Send messages between SDKs

Write samrt contracts

• Smart contract development

– Solidity smart contract, precompiled contract and CRUD contract

• Parallel contract

– The guide of writing parallel contract

Management and Security

6.18. OSCCA-approved cryptography 177

./get_executable.html
./build_chain.html
./certificates.html
./configuration.html
./group_use_cases.html
./distributed_storage.html
./console.html
./account.html
../sdk/index.html
./amop_protocol.html
./smart_contract.html
./transaction_parallel.html


FISCO BCOS EN Documentation, Release v2.2.0

• Group members management

– Add/Remove members(nodes) of group

• Permission control

– Access control among accounts.

• CA blacklist

– Deny connection from certain node.

• Storage security

– Encrypt data during writing into disk

Others

• OSCCA-approved cryptography

– OSCCA-approved cryptography node and SDK

Important:

• Important features

– Deploy Multi-Group Blockchain System

– Parallel contract

– Distributed storage

178 Chapter 6. Manual (Revision in progress)

./node_management.html
./permission_control.html
./certificate_list.html
./storage_security.html
./guomi_crypto.html
./group_use_cases.html
./transaction_parallel.html
./distributed_storage.html


CHAPTER 7

Enterprise deployment tool

Introduction

FISCO BCOS generator provides companies with an easy toolkit for deployment, administration, and monitoring
of multi-group consortium chain.

• It eliminates the complexity of generating and maintaining the blockchain and offers alternative deployment
methods.

• It requires agencies to share node credentials and manage their private key but not exposed to the outsider,
maintaining the security of all nodes.

• It helps agencies deploy nodes safely through e-certificate trading, supporting equality of all nodes.

Design background

There cannot be exhaustive trust between equal agencies in consortium chain, where e-certificate will be needed
for nodes to authenticate each other’s identity.

The certificate is the identity documentation for each agency. And the generation of the certificate depends on its
public & private key pair. The private key represents its identity information that is private and strictly confidential.

179

https://github.com/FISCO-BCOS/generator


FISCO BCOS EN Documentation, Release v2.2.0

In the process of activation and operation, node signs on the data packet with the private key to fulfilling identity
authentication. Provided that an agency’s private key is revealed, anyone else can pretend as the owner and get
authorized without the affirmation of this agency.

When initializing the group of FISCO BCOS, nodes should reach an agreement to create a Genesis Block. Genesis
Block, unique and only within one group, bears the identity information of the initial nodes, which is formed
through e-credential exchanging.

Current IT administration tools for consortium chain usually ignore the requirement for equality and security of
companies during initialization. And initialization needs agencies to agree on identity information on Genesis
Block. So, who should be the information generator is crucial. Firstly, an agency generates its node information
first and then activate blockchain for other nodes to join in. Secondly, a third-party authority makes information
for all nodes and sends the node configuration files to each agency.

Additionally, FISCO BCOS 2.0+ adapts more private and scalable multi-group architecture. It is an architecture
where data and transactions between groups are separated by running independent consensus algorithm, a way to
maintain privacy and security in blockchain scenarios.

In the above models, there is always one agency who gains priority to join the consortium chain or acquires private
keys of all nodes.

How to make sure the group is formed in a balanced, safe, and private way? How to guarantee reliable and
effective operation of nodes? The privacy and security of group ledgers, as well as the confidentiality of group
formation and maintenance, need to be achieved efficiently.

Design concept

FISCO BCOS generator is a solution designed for problems described above. It takes into consideration the equal
deployment and group formation of different agencies based on flexibility, security, ease-of-use, and equality.

Flexibility:

• No installation, ready to use

• Alternative deployment methods

• Allow multiple changes in architecture

Safety:

• Allow multiple changes in architecture

• The private key is kept internally

• Negotiation between agencies is based on certificates only

Ease-to-use:

• Support multiple networking models

• Alternative commands for various needs

• Monitor audit script

Equality:

• The equal authority of agencies

• All agencies co-generate Genesis Block

• Same administrative power within groups

For consortium chain based on existed root credential, it can fast configure multiple groups on-chain to adapt for
different business needs.

Each agency can generate a configuration file folder locally that includes no private key Agencies can keep their
private keys internally and prevent malicious attackers in disguise of nodes or any information leakage, even if the
configuration files are lost. In this way, security and usability of nodes can be achieved at the same time.

Users agree to generate the Genesis Block and node configuration file folder and then activate nodes so that they
will conduct multi-group networking according to the configuration files.

180 Chapter 7. Enterprise deployment tool



FISCO BCOS EN Documentation, Release v2.2.0

7.1 Tutorial of one_click_generator.sh

The one_click_generator.sh script is a script that deploys a federated chain with one click based on
the node configuration filled out by the user. The script will generate the corresponding node under the folder
according to the node_deployment.ini configured under the user-specified folder.

This chapter mainly uses the networking mode of deploying 3 organizations 2 groups 6 nodes to explain the use
of enterprise-level deployment tools for single-button one-button deployment.

This tutorial is suitable for single-node deployment of all nodes. The enterprise-level deployment tool multi-agent
deployment tutorial can refer to Using Enterprise Deployment Tools.

7.1.1 Download and install

download

cd ~/ && git clone https://github.com/FISCO-BCOS/generator.git

Installation

This action requires the user to have sudo privileges.

cd ~/generator && bash ./scripts/install.sh

Check if the installation is successful. If successful, output usage: generator xxx

./generator -h

Get node binary

Pull the latest fisco-bcos binary to the meta

./generator --download_fisco ./meta

Check the binary version

If successful, output FISCO-BCOS Version : x.x.x-x

./meta/fisco-bcos -v

PS: source compile Node binary user, you only need to replace the binary in the meta folder with the compiled
binary.

7.1.2 Typical example

This section demonstrates how to use the one-click deployment function of the enterprise-level deployment tool
to build a blockchain.

Node Network Topology

A networking model of a 6-node 3-institution 2 group as shown. agency B and agency C are located in Group 1
and Group 2, respectively. agency A belongs to both Group 1 and Group 2.

7.1. Tutorial of one_click_generator.sh 181



FISCO BCOS EN Documentation, Release v2.2.0

Machine Environment

The IP of each node, the port number is as follows:

For the VPS in the cloud server, the RPC listening address needs to be the real address in the network interface
card (such as the internal network address or 127.0.0.1), which may be inconsistent with the SSH server address
where the user logs in.

##Generate group 1 node

First, complete the operation of group A and B to set up group 1, as shown in the figure:

Before use, the user needs to prepare a folder such as tmp_one_click, which has a directory of differ-
ent organizations under the folder. Each agency directory needs to have a corresponding configuration file
node_deployment.ini. Before use, you need to ensure that the generator’s meta folder has not been used.

View the one-click deployment template folder:

182 Chapter 7. Enterprise deployment tool

./config.md#node-deployment-ini


FISCO BCOS EN Documentation, Release v2.2.0

cd ~/generator
ls ./tmp_one_click

#Parameter explanation
# For multiple organizations, you need to create this folder manually.
Tmp_one_click # user specifies the folder for a one-click deployment operation

agencyA #agencyA directory, after the command is executed, the node of the
→˓agency A and related files will be generated in the list.

node_deployment.ini # Institution A node configuration file, one-click
→˓deployment command will create the corresponding node according to the data

agencyB #agencyB directory, after the command is executed, the node of the
→˓agency B and related files will be generated in the list.

node_deployment.ini # Institution B node configuration file, one-click
→˓deployment command will generate the corresponding node according to the data

Institution to fill in node information

The configuration file is placed in the tutorial with agencyA under the tmp_one_click folder, under agencyB

cat > ./tmp_one_click/agencyA/node_deployment.ini << EOF
[group]
group_id=1

[node0]
; host IP for the communication among peers.
; Please use your ssh login IP.
p2p_ip=127.0.0.1
; listening IP for the communication between SDK clients.
; This IP is the same as p2p_ip for the physical host.
; But for virtual host e.g., VPS servers, it is usually different from p2p_ip.
; You can check accessible addresses of your network card.
; Please see https://tecadmin.net/check-ip-address-ubuntu-18-04-desktop/
; for more instructions.
rpc_ip=127.0.0.1
p2p_listen_port=30300
channel_listen_port=20200
jsonrpc_listen_port=8545

[node1]
p2p_ip=127.0.0.1
rpc_ip=127.0.0.1
p2p_listen_port=30301
channel_listen_port=20201
jsonrpc_listen_port=8546
EOF

cat > ./tmp_one_click/agencyB/node_deployment.ini << EOF
[group]
group_id=1

[node0]
; Host IP for the communication among peers.
; Please use your ssh login IP.
p2p_ip=127.0.0.1
; listening IP for the communication between SDK clients.
; This IP is the same as p2p_ip for the physical host.
; But for virtual host e.g., VPS servers, it is usually different from p2p_ip.
; You can check accessible addresses of your network card.
; Please see https://tecadmin.net/check-ip-address-ubuntu-18-04-desktop/
; for more instructions.

(continues on next page)

7.1. Tutorial of one_click_generator.sh 183



FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

rpc_ip=127.0.0.1
p2p_listen_port=30302
channel_listen_port=20202
jsonrpc_listen_port=8547

[node1]
p2p_ip=127.0.0.1
rpc_ip=127.0.0.1
p2p_listen_port=30303
channel_listen_port=20203
jsonrpc_listen_port=8548
EOF

Generate node

bash ./one_click_generator.sh -b ./tmp_one_click

After the execution is completed, the ./tmp_one_click folder structure is as follows:

View the one-click deployment template folder after execution:

ls ./tmp_one_click

agencyA # A agency folder
agency_cert # A agency certificate and private key
generator-agency # Automatically replaces the generator folder operated by

→˓the A mechanism
node #A node generated by the agency, when the multi-machine is deployed, it

→˓can be pushed to the corresponding server.
node_deployment.ini # Node configuration information of A agency
SDK # A SDK or console configuration file

agencyB
| agency_cert
| generator-agency
| node
| node_deployment.ini
| sdk
| ca.crt # chain certificate
| ca.key # chain private key
| group.1.genesis # group one's genesis block
| peers.txt # node's peers.txt

Start node

Call the script to start the node:

bash ./tmp_one_click/agencyA/node/start_all.sh

bash ./tmp_one_click/agencyB/node/start_all.sh

View the node process:

ps -ef | grep fisco

#Command explanation
# can see the following process
fisco 15347 1 0 17:22 pts/2 00:00:00 ~/generator/tmp_one_click/agencyA/node/node_
→˓127.0.0.1_30300/fisco-bcos -c config.ini

(continues on next page)

184 Chapter 7. Enterprise deployment tool



FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

fisco 15402 1 0 17:22 pts/2 00:00:00 ~/generator/tmp_one_click/agencyA/node/node_
→˓127.0.0.1_30301/fisco-bcos -c config.ini
fisco 15442 1 0 17:22 pts/2 00:00:00 ~/generator/tmp_one_click/agencyB/node/node_
→˓127.0.0.1_30302/fisco-bcos -c config.ini
fisco 15456 1 0 17:22 pts/2 00:00:00 ~/generator/tmp_one_click/agencyB/node/node_
→˓127.0.0.1_30303/fisco-bcos -c config.ini

View node running status

View the node log:

tail -f ~/generator/tmp_one_click/agency*/node/node*/log/log* | grep +++

#Command explanation
# +++ is the normal consensus of the node
Info|2019-02-25 17:25:56.028692| [g:1][p:264][CONSENSUS][SEALER]++++++++++++++++
→˓Generating seal on,blkNum =1, tx=0, myIdx=0, hash=833bd983...
Info|2019-02-25 17:25:59.058625| [g:1][p:264][CONSENSUS][SEALER]++++++++++++++++
→˓Generating seal on,blkNum =1, tx=0, myIdx=0, hash=343b1141...
Info|2019-02-25 17:25:57.038284| [g:1][p:264][CONSENSUS][SEALER]++++++++++++++++
→˓Generating seal on,blkNum =1, tx=0, myIdx=1, hash=ea85c27b...

7.1.3 Add node to group 1

Next, we add new nodes for agency A and agency C, and complete the networking shown in the following figure:

Initialize the expansion configuration

Create an expansion folder, don’t use the same foler

mkdir ~/generator/tmp_one_click_expand/

Copy the chain certificate and private key to the expansion folder

7.1. Tutorial of one_click_generator.sh 185



FISCO BCOS EN Documentation, Release v2.2.0

cp ~/generator/tmp_one_click/ca.* ~/generator/tmp_one_click_expand/

Copy group 1 genesis block group.1.genesis to expansion folder

cp ~/generator/tmp_one_click/group.1.genesis ~/generator/tmp_one_click_expand/

Copy group 1 node P2P connection file peers.txt to expansion folder

cp ~/generator/tmp_one_click/peers.txt ~/generator/tmp_one_click_expand/

agency A configuration node information

Create the directory where the agency A expansion node is located.

mkdir ~/generator/tmp_one_click_expand/agencyA

At this time, the agency A already exists in the alliance chain. So it is necessary to copy the agency A certificate
and the private key to the corresponding folder.

cp -r ~/generator/tmp_one_click/agencyA/agency_cert ~/generator/tmp_one_click_
→˓expand/agencyA

agency A fills in the node configuration information

cat > ./tmp_one_click_expand/agencyA/node_deployment.ini << EOF
[group]
group_id=1

[node0]
; Host IP for the communication among peers.
; Please use your ssh login IP.
p2p_ip=127.0.0.1
; listening IP for the communication between SDK clients.
; This IP is the same as p2p_ip for the physical host.
; But for virtual host e.g., VPS servers, it is usually different from p2p_ip.
; You can check accessible addresses of your network card.
; Please see https://tecadmin.net/check-ip-address-ubuntu-18-04-desktop/
; for more instructions.
rpc_ip=127.0.0.1
p2p_listen_port=30304
channel_listen_port=20204
jsonrpc_listen_port=8549
EOF

Institution C configuration node information

Create a directory where the agency C expansion node is located.

mkdir ~/generator/tmp_one_click_expand/agencyC

agency C fills in the node configuration information

cat > ./tmp_one_click_expand/agencyC/node_deployment.ini << EOF
[group]
group_id=1

[node0]
; Host IP for the communication among peers.

(continues on next page)

186 Chapter 7. Enterprise deployment tool



FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

; Please use your ssh login IP.
p2p_ip=127.0.0.1
; listening IP for the communication between SDK clients.
; This IP is the same as p2p_ip for the physical host.
; But for virtual host e.g., VPS servers, it is usually different from p2p_ip.
; You can check accessible addresses of your network card.
; Please see https://tecadmin.net/check-ip-address-ubuntu-18-04-desktop/
; for more instructions.
rpc_ip=127.0.0.1
p2p_listen_port=30305
channel_listen_port=20205
jsonrpc_listen_port=8550
EOF

Generate expansion nodes

bash ./one_click_generator.sh -e ./tmp_one_click_expand

Starting a new node

Call the script to start the node:

bash ./tmp_one_click_expand/agencyA/node/start_all.sh

bash ./tmp_one_click_expand/agencyC/node/start_all.sh

View the node process:

ps -ef | grep fisco

#Command explanation
# can see the following process
fisco 15347 1 0 17:22 pts/2 00:00:00 ~/generator/tmp_one_click/agencyA/
→˓node/node_127.0.0.1_30300/fisco-bcos -c config.ini
fisco 15402 1 0 17:22 pts/2 00:00:00 ~/generator/tmp_one_click/agencyA/
→˓node/node_127.0.0.1_30301/fisco-bcos -c config.ini
fisco 15403 1 0 17:22 pts/2 00:00:00 ~/generator/tmp_one_click_expand/
→˓agencyA/node/node_127.0.0.1_30304/fisco-bcos -c config.ini
fisco 15442 1 0 17:22 pts/2 00:00:00 ~/generator/tmp_one_click/agencyB/
→˓node/node_127.0.0.1_30302/fisco-bcos -c config.ini
fisco 15456 1 0 17:22 pts/2 00:00:00 ~/generator/tmp_one_click/agencyB/
→˓node/node_127.0.0.1_30303/fisco-bcos -c config.ini
fisco 15466 1 0 17:22 pts/2 00:00:00 ~/generator/tmp_one_click_expand/
→˓agencyC/node/node_127.0.0.1_30305/fisco-bcos -c config.ini

Important: New nodes that are expanded for group 1 need to be added to the group using SDK or console.

Registering a node with the console

Due to the large size of the console, there is no direct integration in a one-click deployment. Users can use the
following command to get the console.

Getting the console may take a long time, and domestic users can use the --cdn command:

7.1. Tutorial of one_click_generator.sh 187



FISCO BCOS EN Documentation, Release v2.2.0

For example, if the agency A uses the console, this step needs to be switched to the generator-agency folder
corresponding to the agency A.

cd ~/generator/tmp_one_click/agencyA/generator-agency

./generator --download_console ./ --cdn

Viewing agency A node-4 information

agency A uses the console to join the agency A node 4 as the consensus node, where the second parameter needs
to be replaced with the nodeid of the joining node, and the nodeid is the node.nodeid of the conf of the node
folder.

View the agency A node nodeid:

cat ~/generator/tmp_one_click_expand/agencyA/node/node_127.0.0.1_30304/conf/node.
→˓nodeid

ea2ca519148cafc3e92c8d9a8572b41ea2f62d0d19e99273ee18cccd34ab50079b4ec82fe5f4ae51bd95dd788811c97153ece8c05eac7a5ae34c96454c4d3123

Registering Consensus Nodes Using the Console

Start the console:

cd ~/generator/tmp_one_click/agencyA/generator-agency/console && bash ./start.sh 1

Use the console addSealer command to register the node as a consensus node. In this step, you need to use the
cat command to view the node node.nodeid of the agency A node:

addSealer
→˓ea2ca519148cafc3e92c8d9a8572b41ea2f62d0d19e99273ee18cccd34ab50079b4ec82fe5f4ae51bd95dd788811c97153ece8c05eac7a5ae34c96454c4d3123

$ [group:1]> addSealer
→˓ea2ca519148cafc3e92c8d9a8572b41ea2f62d0d19e99273ee18cccd34ab50079b4ec82fe5f4ae51bd95dd788811c97153ece8c05eac7a5ae34c96454c4d3123
{

"code":0,
"msg":"success"

}

exit console：

exit

Viewing agency C Node 5

agency A uses the console to join node 5 of agency C as the observation node, where the second parameter needs
to be replaced with the nodeid of the joining node, and the nodeid is the node.nodeid file of the conf of the node
folder.

View the agency C node nodeid:

cat ~/generator/tmp_one_click_expand/agencyC/node/node_127.0.0.1_30305/conf/node.
→˓nodeid

5d70e046047e15a68aff8e32f2d68d1f8d4471953496fd97b26f1fbdc18a76720613a34e3743194bd78aa7acb59b9fa9aec9ec668fa78c54c15031c9e16c9e8d

188 Chapter 7. Enterprise deployment tool



FISCO BCOS EN Documentation, Release v2.2.0

Registering an observation node using the console

Start the console:

cd ~/generator/tmp_one_click/agencyA/generator-agency/console && bash ./start.sh 1

Use the console addObserver command to register the node as a watch node. In this step, you need to use the
cat command to view the node #node.nodeid‘ of the agency C node:

addObserver
→˓5d70e046047e15a68aff8e32f2d68d1f8d4471953496fd97b26f1fbdc18a76720613a34e3743194bd78aa7acb59b9fa9aec9ec668fa78c54c15031c9e16c9e8d

$ [group:1]> addObserver
→˓5d70e046047e15a68aff8e32f2d68d1f8d4471953496fd97b26f1fbdc18a76720613a34e3743194bd78aa7acb59b9fa9aec9ec668fa78c54c15031c9e16c9e8d
{

"code":0,
"msg":"success"

}

Exit the console:

exit

At this point, we have completed the operation of adding a new node to an existing group.

7.1.4 Existing Node New Group 2

The operation of the new group can be done by modifying the ./conf/group_genesis.ini file in the direc-
tory where the one_click_generator.sh is executed and executing the --create_group_genesis
command.

Generate group 2 as shown in Figure 4

Configure Group 2 genesis block

This operation needs to be performed under the above operation generator.

7.1. Tutorial of one_click_generator.sh 189



FISCO BCOS EN Documentation, Release v2.2.0

cd ~/generator

Configuring the group genesis block file. Add nodeX=ip:port under [nodes] which belong to the members
of new group. For example they are: AgencyA-Node0, AgencyA-Node1, AgencyA-Node4 and AgencyC-Node5.

cat > ./conf/group_genesis.ini << EOF
[group]
group_id=2

[nodes]
node0=127.0.0.1:30300
node1=127.0.0.1:30301
node2=127.0.0.1:30304
node3=127.0.0.1:30305
EOF

Get the corresponding node certificate

AgencyA-Node0（node0=127.0.0.1:30300）

cp ~/generator/tmp_one_click/agencyA/generator-agency/meta/cert_127.0.0.1_30300.
→˓crt ~/generator/meta

AgencyA-Node1（node1=127.0.0.1:30301）

cp ~/generator/tmp_one_click/agencyA/generator-agency/meta/cert_127.0.0.1_30301.
→˓crt ~/generator/meta

AgencyA-Node4（node2=127.0.0.1:30304）

cp ~/generator/tmp_one_click_expand/agencyA/generator-agency/meta/cert_127.0.0.1_
→˓30304.crt ~/generator/meta

AgencyC-Node5（node3=127.0.0.1:30305）

cp ~/generator/tmp_one_click_expand/agencyC/generator-agency/meta/cert_127.0.0.1_
→˓30305.crt ~/generator/meta

Generating genesis block and group configure file

./generator --create_group_genesis ./group2

将群组创世区块加入现有节点：

AgencyA-Node0（node0=127.0.0.1:30300）

./generator --add_group ./group2/group.2.genesis ./tmp_one_click/agencyA/node/node_
→˓127.0.0.1_30300

AgencyA-Node1（node1=127.0.0.1:30301）

./generator --add_group ./group2/group.2.genesis ./tmp_one_click/agencyA/node/node_
→˓127.0.0.1_30301

AgencyA-Node4（node2=127.0.0.1:30304）

./generator --add_group ./group2/group.2.genesis ./tmp_one_click_expand/agencyA/
→˓node/node_127.0.0.1_30304

190 Chapter 7. Enterprise deployment tool



FISCO BCOS EN Documentation, Release v2.2.0

AgencyC-Node5（node3=127.0.0.1:30305）

./generator --add_group ./group2/group.2.genesis ./tmp_one_click_expand/agencyC/
→˓node/node_127.0.0.1_30305

Load and start new group

Use load_new_groups.sh to load and start new group

AgencyA-Node0（node0=127.0.0.1:30300）

bash ./tmp_one_click/agencyA/node/node_127.0.0.1_30300/scripts/load_new_groups.sh

AgencyA-Node1（node1=127.0.0.1:30301）

bash ./tmp_one_click/agencyA/node/node_127.0.0.1_30301/scripts/load_new_groups.sh

AgencyA-Node4（node2=127.0.0.1:30304）

bash ./tmp_one_click_expand/agencyA/node/node_127.0.0.1_30304/scripts/load_new_
→˓groups.sh

AgencyA-Node5（node3=127.0.0.1:30305）

bash ./tmp_one_click_expand/agencyC/node/node_127.0.0.1_30305/scripts/load_new_
→˓groups.sh

Check node

View the group1 information in the node log:

tail -f ~/generator/tmp_one_click/agency*/node/node*/log/log* | grep g:2 | grep +++

info|2019-02-25 17:25:56.028692| [g:2][p:264][CONSENSUS][SEALER]++++++++++++++++
→˓Generating seal on,blkNum=1,tx=0,myIdx=0,hash=833bd983...
info|2019-02-25 17:25:59.058625| [g:2][p:264][CONSENSUS][SEALER]++++++++++++++++
→˓Generating seal on,blkNum=1,tx=0,myIdx=0,hash=343b1141...
info|2019-02-25 17:25:57.038284| [g:2][p:264][CONSENSUS][SEALER]++++++++++++++++
→˓Generating seal on,blkNum=1,tx=0,myIdx=1,hash=ea85c27b...

So far, we have completed all the operations in the build tutorial shown.

After using it, it is recommended to clean the meta folder with the following command:

- rm ./meta/cert_* - rm ./meta/group*

7.1.5 More operations

For more operations, refer to the Operation Manual or Enterprise Tools Peer-to-Peer Deployment Tutorial.

If you have problems with this tutorial, please check FAQ

7.2 enterprise deployment tools

FISCO BCOS enterprise deployment tools are designed for multi-agency production environments. For ensure
the security of the agency’s private keys, enterprise deployment tools provide agencies’ collaboration to deploy an
alliance chain.

7.2. enterprise deployment tools 191



FISCO BCOS EN Documentation, Release v2.2.0

This chapter will demonstrate how to use enterprise deployment tools by deploying a 6 nodes 3 agencies 2 groups
alliance chain. For more parameter options, please refer to here.

This chapter is a process that multi-agency peer-to-peer deployment and a situation that the private key of the
agency does not come out of intranet. The tutorial for generating configuration files of all agency nodes through a
single agency’s click start can refer to FISCO BCOS Enterprise Deployment Tool ClickStart deployment.

7.2.1 Download and install

download

cd ~/ && git clone https://github.com/FISCO-BCOS/generator.git

install

This operation requires sudo permission.

cd generator && bash ./scripts/install.sh

Check whether the installation is successful. If it is, output usage: generator xxx

./generator -h

download fisco-bcos binary

download the latest fisco-bcos binary to ./meta

./generator --download_fisco ./meta

check fisco-bcos version

Output will be: FISCO-BCOS Version : x.x.x-x

./meta/fisco-bcos -v

PS: If someone wants to use Source Code Compile fisco-bcos binary, they need to replace the binary in the meta
folder with the compiled binary.

7.2.2 Typical example

For ensure the security of the agency’s private keys, enterprise deployment tools provide a secure way to build
chain between agencies. This chapter will demonstrate how to make a chain between agencies in a deployment
model of 6 nodes 3 agencies 2 groups.

Node networking overview

A networking model of 6 nodes 3 agencies 2 groups is shown as follows. Agency B and agency C is located in
Group 1 and Group 2, and agency A belongs to both Group 1 and Group 2.

192 Chapter 7. Enterprise deployment tool



FISCO BCOS EN Documentation, Release v2.2.0

Machine address

The IP address of each node and port are as follows:

Important: For the VPS in the cloud server, the RPC listening address needs to be the real address in the network
interface card (such as the internal network address or 127.0.0.1), which may be inconsistent with the SSH server
address where the user logs in.

cooperate agencies

Building chain involves the cooperation between multiple agencies, including:

• Certificate authority agency

• alliance chain member agency(next named “agency”)

Key process

In this section, we briefly provide How Certificate authority agency and alliance chain member agency coop-
erate to build a blockchain.

1. Initialize chain certificate

1. Certificate authority agency operation:

• Generate chain certificate

2. Generate group 1

1. Certificate authority agency operations

• generate agency certificate

• send the certificate to agencies

7.2. enterprise deployment tools 193



FISCO BCOS EN Documentation, Release v2.2.0

2. Operation between agencies

• modify the configuration file node_deployment.ini

• generate node certificate and node P2P port address file peers.txt

3. Select one of the agencies to create group.genesis

• collect all node certificates in the group

• modify configuration file group_genesis.ini

• generate genesis block files for the group

• distribute genesis block files to other agencies

4. Operation between agencies: generating nodes

• collect P2P port address files of other nodes in the group

• generate node

• start node

3. Initialize a new institution

1. Certificate authority agency operations

• generate agency certificate

• send the certificate to the new agency

4. Generate group2

1. New agency operation

• modify the configuration file node_deployment.ini

• generate node certificate and node P2P port address file

2. Select one of the agencies as a group to create genesis block

• collect all node certificates in the group

• modify configuration file group_genesis.ini

• generate genesis block files for the group

• distribute genesis block files to other agency

3. New agency independent operation: create nodes

• collect P2P port address files of other nodes in the group

• generate nodes

• start nodes

4. Existing agency’s operations: configure new groups

• collect P2P port address files of other nodes in the group

• configure P2P port address of the new group and the new nodes

• restart nodes

194 Chapter 7. Enterprise deployment tool



FISCO BCOS EN Documentation, Release v2.2.0

5. Existing nodes join group 1

1. Group 1 original agency operation:

• send group 1 genesis block to the existing node

• configure console

• get the entering node nodeid

• add nodes to group1 by using console

7.2.3 Chain initialization

All the operations in this example are performed on the local machine. We use different catalogs to simulate
various agencies’ environment and use the file copy operation to simulate the sending in the network. After
performing Download and Install in the tutorial, please copy the generator to the corresponding agency’s
generator directory.

Institutional initialization

We use generator downloaded from the tutorial as certificate agency.

Initialize agencyA

cp -r ~/generator ~/generator-A

Initialize agencyB

cp -r ~/generator ~/generator-B

Initialize chain certificate

A single chain has a unique ca.crt.

use --generate_chain_certificate to generate chain certificate

Operate in the certificate agency directory:

cd ~/generator

./generator --generate_chain_certificate ./dir_chain_ca

view the chain certificate and the private key:

ls ./dir_chain_ca

# the above order has explained
# From left to right, they are chain's certificate, and chain's private key.
ca.crt ca.key

7.2.4 AgencyA, B to build group 1

Initialize agencyA

In the tutorial, for operating simply, the certificate of agency and the private key are directly generated. In actual
application, the private key agency.key should be created locally by agency first, and then the certificate request
file is made, and the certificate agency.crt is obtained from the certificate agency

7.2. enterprise deployment tools 195

./operation.html#generate-chain-certificate


FISCO BCOS EN Documentation, Release v2.2.0

Operate in the certificate directory:

cd ~/generator

Generate agencyA certificate:

./generator --generate_agency_certificate ./dir_agency_ca ./dir_chain_ca agencyA

View agency certificate and the private key:

ls dir_agency_ca/agencyA/

# From left to right, they are agency's certificate, and agency's private key
agency.crt agency.key ca.crt

For sending the chain certificate, agency certificate, and agency private key to agencyA, we use an example is
to send the certificate from the certificate agency to the corresponding agency through the file copy, and put the
certificate in the subdirectory of meta which is agency’s working directory.

cp ./dir_agency_ca/agencyA/* ~/generator-A/meta/

Initialize agencyB

Operate in the certificate directory:

cd ~/generator

Generate agencyB certificate:

./generator --generate_agency_certificate ./dir_agency_ca ./dir_chain_ca agencyB

For sending the chain certificate, agency certificate, and agency private key to agencyB, we use an example is
to send the certificate from the certificate agency to the corresponding agency through the file copy, and put the
certificate in the subdirectory of meta which is agency’s working directory.

cp ./dir_agency_ca/agencyB/* ~/generator-B/meta/

Important: Only one root certificate, ca.crt, can be used in an alliance chain. Do not generate multiple root certifi-
cates and private keys when deploying various servers. A group can only have one genesis block group.x.genesis.

AgencyA modifies configuration file

node_deployment.ini is the node configuration file. Enterprise deployment tool generates the corresponding node
certificate according to the configuration of node_deployment.ini and the node configuration folder etc..

AgencyA modifies the node_deployment.ini in the conf folder, as shown below:

Execute the following command in the ~/generator-A directory

cd ~/generator-A

cat > ./conf/node_deployment.ini << EOF
[group]
group_id=1

[node0]
; host ip for the communication among peers.

(continues on next page)

196 Chapter 7. Enterprise deployment tool

./config.md#node-deployment-ini


FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

; Please use your ssh login ip.
p2p_ip=127.0.0.1
; listen ip for the communication between sdk clients.
; This ip is the same as p2p_ip for physical host.
; But for virtual host e.g. vps servers, it is usually different from p2p_ip.
; You can check accessible addresses of your network card.
; Please see https://tecadmin.net/check-ip-address-ubuntu-18-04-desktop/
; for more instructions.
rpc_ip=127.0.0.1
p2p_listen_port=30300
channel_listen_port=20200
jsonrpc_listen_port=8545

[node1]
p2p_ip=127.0.0.1
rpc_ip=127.0.0.1
p2p_listen_port=30301
channel_listen_port=20201
jsonrpc_listen_port=8546
EOF

AgencyA modifies configuration file

AgencyB modifies the node_deployment.ini in the conf folder, as shown below:

Execute the following command in the ~/generator-B directory

cd ~/generator-B

cat > ./conf/node_deployment.ini << EOF
[group]
group_id=1

[node0]
; host ip for the communication among peers.
; Please use your ssh login ip.
p2p_ip=127.0.0.1
; listen ip for the communication between sdk clients.
; This ip is the same as p2p_ip for physical host.
; But for virtual host e.g. vps servers, it is usually different from p2p_ip.
; You can check accessible addresses of your network card.
; Please see https://tecadmin.net/check-ip-address-ubuntu-18-04-desktop/
; for more instructions.
rpc_ip=127.0.0.1
p2p_listen_port=30302
channel_listen_port=20202
jsonrpc_listen_port=8547

[node1]
p2p_ip=127.0.0.1
rpc_ip=127.0.0.1
p2p_listen_port=30303
channel_listen_port=20203
jsonrpc_listen_port=8548
EOF

AgencyA generates and sends node information

Execute the following command in the ~/generator-A directory

7.2. enterprise deployment tools 197



FISCO BCOS EN Documentation, Release v2.2.0

cd ~/generator-A

AgencyA generates the node certificate and the P2P connection information file. In this step, we need to use the
above configuration node_deployment.ini and the agency certificate and private key in the agency meta
folder.

./generator --generate_all_certificates ./agencyA_node_info

view generated files:

ls ./agencyA_node_info

# From left to right, they are the node certificate that needs to have interacted
→˓with the agencyA and the file that node P2P connects to the address (the node
→˓information of agency generated by the node_deployment.ini)
cert_127.0.0.1_30300.crt cert_127.0.0.1_30301.crt peers.txt

When the agency generates a node, it needs to specify the node P2P connection address of other nodes. Therefore,
AgencyA needs to send the node P2P connection address file to AgencyB.

cp ./agencyA_node_info/peers.txt ~/generator-B/meta/peersA.txt

AgencyB generates and sends node information

Execute the following command in the ~/generator-B directory

cd ~/generator-B

AgencyB generates the node certificate and the P2P connection information file:

./generator --generate_all_certificates ./agencyB_node_info

The agency that generates the genesis block needs the node certificate. In the example, the agencyA generates the
genesis block. Therefore, in addition to sending the node P2P connection address file, the agencyB needs to send
the node certificate to agencyA.

Send certificate to agencyA

cp ./agencyB_node_info/cert*.crt ~/generator-A/meta/

Send the node P2P connection address file to agencyA

cp ./agencyB_node_info/peers.txt ~/generator-A/meta/peersB.txt

AgencyA generates the genesis block of group1

Execute the following command in the ~/generator-A directory

cd ~/generator-A

AgencyA modifies group_genesis.ini in the conf folder. For configuration items, refer to Manuals:

cat > ./conf/group_genesis.ini << EOF
[group]
group_id=1

[nodes]
node0=127.0.0.1:30300

(continues on next page)

198 Chapter 7. Enterprise deployment tool

./config.md#group-genesis-ini


FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

node1=127.0.0.1:30301
node2=127.0.0.1:30302
node3=127.0.0.1:30303
EOF

After the command is executed, the ./conf/group_genesis.ini file will be modified:

;command interpretation
[group]
;group id
group_id=1

[nodes]
;AgencyA node p2p address
node0=127.0.0.1:30300
;AgencyA node p2p address
node1=127.0.0.1:30301
;AgencyB node p2p address
node2=127.0.0.1:30302
;AgencyB node p2p address
node3=127.0.0.1:30303

In the tutorial, we choose agencyA to generate genesis block of the group. But in the actual production, you can
negotiate with alliance chain committee to make a choice.

This step will generate the genesis block of group_genesis.ini according to the node certificate config-
ured in the meta folder of agencyA. In the tutorial, the agencyA’s meta is required to have the node cer-
tificates name as cert_127.0.0.1_30300.crt, cert_127.0.0.1_30301.crt, cert_127.0.0.
1_30302.crt, cert_127.0.0.1_30303.crt. This step requires the node certificate of agencyB.

./generator --create_group_genesis ./group

Send group.1.genesis to AgencyB:

cp ./group/group.1.genesis ~/generator-B/meta

AgencyA generates the node to which it belongs

Execute the following command in the ~/generator-A directory

cd ~/generator-A

AgencyA generates the node to which it belongs. This command generates the corresponding node configuration
folder according to the user-configured file node_deployment.ini:

Note: The node P2P connection information peers.txt specified in this step is the connect information of other
nodes in the group. In the case of multiple agencies networking, they need to be merged.

./generator --build_install_package ./meta/peersB.txt ./nodeA

View the generated node configuration folder:

ls ./nodeA

# command interpretation, displayed in tree style here
# The generated folder nodeA information is as follows

monitor # monitor script
node_127.0.0.1_30300 # node configuration folder with server address 127.0.0.1

→˓and port number 30300

(continues on next page)

7.2. enterprise deployment tools 199



FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

node_127.0.0.1_30301
scripts # node related tool script
start_all.sh # node startups script in batch
stop_all.sh # node stops script in batch

AgencyA startups node:

bash ./nodeA/start_all.sh

View node process:

ps -ef | grep fisco

# command interpretation
# you can see the following process
fisco 15347 1 0 17:22 pts/2 00:00:00 ~/generator-A/nodeA/node_127.0.0.1_
→˓30300/fisco-bcos -c config.ini
fisco 15402 1 0 17:22 pts/2 00:00:00 ~/generator-A/nodeA/node_127.0.0.1_
→˓30301/fisco-bcos -c config.ini

AgencyB generates the node to which it belongs

Execute the following command in the ~/generator-B directory

cd ~/generator-B

AgencyB generates the node to which it belongs. This command generates the corresponding node configuration
folder according to the user-configured file node_deployment.ini:

./generator --build_install_package ./meta/peersA.txt ./nodeB

AgencyB startups node:

bash ./nodeB/start_all.sh

Note: Startup node only needs to send the node folder corresponding to IP address. For example, the server
of 127.0.0.1 only needs the node configuration folder corresponding to node_127.0.0.1_port. When deploying
multiple machines, you only need to send the generated node folder to the corresponding server.

View group1 node running status

View process:

ps -ef | grep fisco

# command interpretation
# you can see the following process
fisco 15347 1 0 17:22 pts/2 00:00:00 ~/generator-A/nodeA/node_127.0.0.1_
→˓30300/fisco-bcos -c config.ini
fisco 15402 1 0 17:22 pts/2 00:00:00 ~/generator-A/nodeA/node_127.0.0.1_
→˓30301/fisco-bcos -c config.ini
fisco 15457 1 0 17:22 pts/2 00:00:00 ~/generator-B/nodeB/node_127.0.0.1_
→˓30302/fisco-bcos -c config.ini
fisco 15498 1 0 17:22 pts/2 00:00:00 ~/generator-B/nodeB/node_127.0.0.1_
→˓30303/fisco-bcos -c config.ini

200 Chapter 7. Enterprise deployment tool



FISCO BCOS EN Documentation, Release v2.2.0

view node log:

tail -f ./node*/node*/log/log* | grep +++

# command interpretation
# +++ printed in log is the normal consensus of the node
info|2019-02-25 17:25:56.028692| [g:1][p:264][CONSENSUS][SEALER]++++++++++++++++
→˓Generating seal on,blkNum=1,tx=0,myIdx=0,hash=833bd983...
info|2019-02-25 17:25:59.058625| [g:1][p:264][CONSENSUS][SEALER]++++++++++++++++
→˓Generating seal on,blkNum=1,tx=0,myIdx=0,hash=343b1141...
info|2019-02-25 17:25:57.038284| [g:1][p:264][CONSENSUS][SEALER]++++++++++++++++
→˓Generating seal on,blkNum=1,tx=0,myIdx=1,hash=ea85c27b...

By now, we have completed the operation of agencyA,B to build group1 as shown:

7.2.5 Certificate authority initialize agencyC

Operate in the certificate generator directory:

cd ~/generator

Initialize agencyC Note. Now there is a chain certificate and a private key in the generator directory. In the actual
environment, agencyC cannot obtain the chain certificate and the private key.

cp -r ~/generator ~/generator-C

Generate agencyC certificate:

./generator --generate_agency_certificate ./dir_agency_ca ./dir_chain_ca agencyC

View agency certificate and private key:

ls dir_agency_ca/agencyC/

# command interpretation
# From left to right, they are agency's certificate, agency's private key, and
→˓chain's certificate
agency.crt agency.key ca.crt

7.2. enterprise deployment tools 201



FISCO BCOS EN Documentation, Release v2.2.0

For sending the chain certificate, agency certificate, and agency private key to agencyA, we use an example is
to send the certificate from the certificate agency to the corresponding agency through the file copy, and put the
certificate in the subdirectory of meta which is agency’s working directory.

cp ./dir_agency_ca/agencyC/* ~/generator-C/meta/

7.2.6 AgencyA,C build group2

Next, agencyC needs to perform a new group establishment operation with agencyA. We take an example of
agencyC generating genesis block.

AgencyA sends node information

Since agencyA has generated the node certificate and the peers file, we only need to send the previous generated
node P2P connection information and the node certificate to agencyC as follows:

Execute the following command in the ~/generator-A directory

cd ~/generator-A

In the example, the genesis block of the group is generated by agencyC. Therefore the node certificate of agencyA
and the node P2P connection address file are required, and the above file is sent to agencyC.

Send certificate to agencyC

cp ./agencyA_node_info/cert*.crt ~/generator-C/meta/

Send node P2P connection address file to agencyC

cp ./agencyA_node_info/peers.txt ~/generator-C/meta/peersA.txt

AgencyC modifies configuration file

AgencyC modifies node_deployment.ini in the conf folder as shown below:

Execute the following command in the ~/generator-C directory.

cd ~/generator-C

cat > ./conf/node_deployment.ini << EOF
[group]
group_id=2

[node0]
; host ip for the communication among peers.
; Please use your ssh login ip.
p2p_ip=127.0.0.1
; listen ip for the communication between sdk clients.
; This ip is the same as p2p_ip for physical host.
; But for virtual host e.g. vps servers, it is usually different from p2p_ip.
; You can check accessible addresses of your network card.
; Please see https://tecadmin.net/check-ip-address-ubuntu-18-04-desktop/
; for more instructions.
rpc_ip=127.0.0.1
p2p_listen_port=30304
channel_listen_port=20204
jsonrpc_listen_port=8549

(continues on next page)

202 Chapter 7. Enterprise deployment tool



FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

[node1]
p2p_ip=127.0.0.1
rpc_ip=127.0.0.1
p2p_listen_port=30305
channel_listen_port=20205
jsonrpc_listen_port=8550
EOF

AgencyC generates and sends node information

Execute the following command in the ~/generator-C directory.

cd ~/generator-C

AgencyC generates node certificate and P2P connection information file:

./generator --generate_all_certificates ./agencyC_node_info

View generated file:

ls ./agencyC_node_info

# command interpretation
# From left to right, they are the node certificate that needs to have interacted
→˓with the agencyA and the file that node P2P connects to the address (the node
→˓information of agency generated by the node_deployment.ini)
cert_127.0.0.1_30304.crt cert_127.0.0.1_30305.crt peers.txt

When the agency generates a node, it needs to specify the node P2P connection address of other nodes. Therefore,
agencyC needs to send the node P2P connection address file to agencyA.

cp ./agencyC_node_info/peers.txt ~/generator-A/meta/peersC.txt

AgencyC generates genesis block of group2

Execute the following command in the ~/generator-C directory.

cd ~/generator-C

AgencyC modifies group_genesis.ini in the conf folder as shown below:

cat > ./conf/group_genesis.ini << EOF
[group]
group_id=2

[nodes]
node0=127.0.0.1:30300
node1=127.0.0.1:30301
node2=127.0.0.1:30304
node3=127.0.0.1:30305
EOF

./conf/group_genesis.ini file will be modified after the command is executed:

;command interpretation
[group]
group_id=2

(continues on next page)

7.2. enterprise deployment tools 203



FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

[nodes]
node0=127.0.0.1:30300
;agencyA node p2p address
node1=127.0.0.1:30301
;agencyA node p2p address
node2=127.0.0.1:30304
;agencyC node p2p address
node3=127.0.0.1:30305
;agencyC node p2p address

In the tutorial, agency C is chosen to generate a genesis block of the group. In the actual production, you can
negotiate with the alliance chain committee to determine.

This step generates a genesis block of group_genesis.ini configuration according to the node certificate configured
in the meta folder of agencyC.

./generator --create_group_genesis ./group

Distribute genesis block of group2 to agencyA:

cp ./group/group.2.genesis ~/generator-A/meta/

AgencyC generates the node to which it belongs

Execute the following command in the ~/generator-C directory

cd ~/generator-C

./generator --build_install_package ./meta/peersA.txt ./nodeC

AgencyC startups node:

bash ./nodeC/start_all.sh

ps -ef | grep fisco

# command interpretation
# you can see the following process
fisco 15347 1 0 17:22 pts/2 00:00:00 ~/generator-A/nodeA/node_127.0.0.1_
→˓30300/fisco-bcos -c config.ini
fisco 15402 1 0 17:22 pts/2 00:00:00 ~/generator-A/nodeA/node_127.0.0.1_
→˓30301/fisco-bcos -c config.ini
fisco 15457 1 0 17:22 pts/2 00:00:00 ~/generator-B/nodeB/node_127.0.0.1_
→˓30302/fisco-bcos -c config.ini
fisco 15498 1 0 17:22 pts/2 00:00:00 ~/generator-B/nodeB/node_127.0.0.1_
→˓30303/fisco-bcos -c config.ini
fisco 15550 1 0 17:22 pts/2 00:00:00 ~/generator-C/nodeC/node_127.0.0.1_
→˓30304/fisco-bcos -c config.ini
fisco 15589 1 0 17:22 pts/2 00:00:00 ~/generator-C/nodeC/node_127.0.0.1_
→˓30305/fisco-bcos -c config.ini

AgencyA initializes group2 for existing nodes

Execute the following command in the ~/generator-A directory

204 Chapter 7. Enterprise deployment tool



FISCO BCOS EN Documentation, Release v2.2.0

cd ~/generator-A

Add the group2 configuration file to the existing node. This step adds the genesis block of group2 group.2.
genesis to all nodes under ./nodeA:

./generator --add_group ./meta/group.2.genesis ./nodeA

Add the agencyC node connect file peers to the existing node. This step adds the node P2P connection address of
peersC.txt to all nodes under ./nodeA:

./generator --add_peers ./meta/peersC.txt ./nodeA

Restart agencyA node:

bash ./nodeA/stop_all.sh

bash ./nodeA/start_all.sh

View group2 node running status

View node’s process:

ps -ef | grep fisco

# command interpretation
# you can see the following process
fisco 15347 1 0 17:22 pts/2 00:00:00 ~/generator-A/nodeA/node_127.0.0.1_
→˓30300/fisco-bcos -c config.ini
fisco 15402 1 0 17:22 pts/2 00:00:00 ~/generator-A/nodeA/node_127.0.0.1_
→˓30301/fisco-bcos -c config.ini
fisco 15457 1 0 17:22 pts/2 00:00:00 ~/generator-B/nodeB/node_127.0.0.1_
→˓30302/fisco-bcos -c config.ini
fisco 15498 1 0 17:22 pts/2 00:00:00 ~/generator-B/nodeB/node_127.0.0.1_
→˓30303/fisco-bcos -c config.ini
fisco 15550 1 0 17:22 pts/2 00:00:00 ~/generator-C/nodeC/node_127.0.0.1_
→˓30304/fisco-bcos -c config.ini
fisco 15589 1 0 17:22 pts/2 00:00:00 ~/generator-C/nodeC/node_127.0.0.1_
→˓30305/fisco-bcos -c config.ini

View node log：

Execute the following command in the ~/generator-C directory

cd ~/generator-C

tail -f ./node*/node*/log/log* | grep +++

# command interpretation
#+++ rinted in log is the normal consensus of the node
info|2019-02-25 17:25:56.028692| [g:2][p:264][CONSENSUS][SEALER]++++++++++++++++
→˓Generating seal on,blkNum=1,tx=0,myIdx=0,hash=833bd983...
info|2019-02-25 17:25:59.058625| [g:2][p:264][CONSENSUS][SEALER]++++++++++++++++
→˓Generating seal on,blkNum=1,tx=0,myIdx=0,hash=343b1141...
info|2019-02-25 17:25:57.038284| [g:2][p:264][CONSENSUS][SEALER]++++++++++++++++
→˓Generating seal on,blkNum=1,tx=0,myIdx=1,hash=ea85c27b...

By now, we have completed the construction of agencyA, C to build group2 as shown:

7.2. enterprise deployment tools 205



FISCO BCOS EN Documentation, Release v2.2.0

7.2.7 Extended Tutorial–agencyC node joins group1

Adding a node to an existing group requires users to send command by console. The example of adding nodes to
the group is as follows:

Now there are nodes of agencyA, B and B in group1. Adding the node of agencyC to group1 needs to get the
permission of the nodes in the group. To take the node of agencyA as an example:

Execute the following command in the ~/generator-A directory.

cd ~/generator-A

Send gensis block of group1 to agencyC

Send the configuration file of group1 to agencyC.

./generator --add_group ./group/group.1.genesis ~/generator-C/nodeC

Currently, FISCO BCOS does not support file hot update. It is necessary to restart the node after adding genesis
block of group1 to agencyC node.

Restart agencyC’s node:

bash ~/generator-C/nodeC/stop_all.sh

bash ~/generator-C/nodeC/start_all.sh

Configure console

agencyA’s configure console or java sdk. In the tutorial, console is used as an example:

Note: This command will complete the console configuration according to the node and group in the user-
configured node_deployment.ini. User can directly start the console. Please ensure that java is installed
before starting.

./generator --download_console ./

206 Chapter 7. Enterprise deployment tool



FISCO BCOS EN Documentation, Release v2.2.0

View agencyC node4 information

AgencyA uses the console to join agencyC node4 as observation node. The second parameter needs to be replaced
with the joining node ‘nodeid’, which locates in the node.nodeid file of the node folder conf.

View the agencyC node nodeid:

cat ~/generator-C/nodeC/node_127.0.0.1_30304/conf/node.nodeid

# command interpretation
# you can see a nodeid similar to the following. When using the console, you need
→˓to pass this parameter.
ea2ca519148cafc3e92c8d9a8572b41ea2f62d0d19e99273ee18cccd34ab50079b4ec82fe5f4ae51bd95dd788811c97153ece8c05eac7a5ae34c96454c4d3123

Register observation node by using console

start console:

cd ~/generator-A/console && bash ./start.sh 1

Use the console addObserver command to register the node as an observation node. In this step, you need to
use the cat command to view node.nodeid of agencyC node.

addObserver
→˓ea2ca519148cafc3e92c8d9a8572b41ea2f62d0d19e99273ee18cccd34ab50079b4ec82fe5f4ae51bd95dd788811c97153ece8c05eac7a5ae34c96454c4d3123

# command interpretation
# Successful execution will prompt success
$ [group:1]> addObserver
→˓ea2ca519148cafc3e92c8d9a8572b41ea2f62d0d19e99273ee18cccd34ab50079b4ec82fe5f4ae51bd95dd788811c97153ece8c05eac7a5ae34c96454c4d3123
{

"code":0,
"msg":"success"

}

exit console:

exit

View agencyC node 5 information

AgencyA uses console to join node 5 of agencyC as the consensus node. The second parameter needs to be
replaced with the joining node ‘nodeid’, which locates in the node.nodeid file of the node folder conf.

View the agencyC node nodeid:

cat ~/generator-C/nodeC/node_127.0.0.1_30305/conf/node.nodeid

# command interpretation
# you can see a nodeid similar to the following. When using the console, you need
→˓to pass this parameter.
5d70e046047e15a68aff8e32f2d68d1f8d4471953496fd97b26f1fbdc18a76720613a34e3743194bd78aa7acb59b9fa9aec9ec668fa78c54c15031c9e16c9e8d

Register consensus node by using console

Start console:

7.2. enterprise deployment tools 207



FISCO BCOS EN Documentation, Release v2.2.0

cd ~/generator-A/console && bash ./start.sh 1

Use the console’s addSealer command to register the node as a consensus node. In this step, you need to use
the cat command to view the node.nodeid of agencyC node.

addSealer
→˓5d70e046047e15a68aff8e32f2d68d1f8d4471953496fd97b26f1fbdc18a76720613a34e3743194bd78aa7acb59b9fa9aec9ec668fa78c54c15031c9e16c9e8d

# command interpretation
# Successful execution will prompt success
$ [group:1]> addSealer
→˓5d70e046047e15a68aff8e32f2d68d1f8d4471953496fd97b26f1fbdc18a76720613a34e3743194bd78aa7acb59b9fa9aec9ec668fa78c54c15031c9e16c9e8d
{

"code":0,
"msg":"success"

}

Exit console:

exit

View node

Execute the following command in the ~/generator-C directory

cd ~/generator-C

View the group1 information in node log:

cat node*/node_127.0.0.1_3030*/log/log* | grep g:1 | grep Report

# command interpretation
# Observation node will only synchronize transaction data, and will not
→˓synchronize the consensus information in non-transaction status
# ^^^ is the transaction information of the node, and g:1 is the information
→˓printed by group1
info|2019-02-26 16:01:39.914367| [g:1][p:65544][CONSENSUS][PBFT]^^^^^^^^Report,
→˓num=0,sealerIdx=0,hash=9b76de5d...,next=1,tx=0,nodeIdx=65535
info|2019-02-26 16:01:40.121075| [g:1][p:65544][CONSENSUS][PBFT]^^^^^^^^Report,
→˓num=1,sealerIdx=3,hash=46b7f17c...,next=2,tx=1,nodeIdx=65535
info|2019-02-26 16:03:44.282927| [g:1][p:65544][CONSENSUS][PBFT]^^^^^^^^Report,
→˓num=2,sealerIdx=2,hash=fb982013...,next=3,tx=1,nodeIdx=65535
info|2019-02-26 16:01:39.914367| [g:1][p:65544][CONSENSUS][PBFT]^^^^^^^^Report,
→˓num=0,sealerIdx=0,hash=9b76de5d...,next=1,tx=0,nodeIdx=4
info|2019-02-26 16:01:40.121075| [g:1][p:65544][CONSENSUS][PBFT]^^^^^^^^Report,
→˓num=1,sealerIdx=3,hash=46b7f17c...,next=2,tx=1,nodeIdx=4
info|2019-02-26 16:03:44.282927| [g:1][p:65544][CONSENSUS][PBFT]^^^^^^^^Report,
→˓num=2,sealerIdx=2,hash=fb982013...,next=3,tx=1,nodeIdx=4

By now, we have completed all the operations in the tutorial shown.

208 Chapter 7. Enterprise deployment tool



FISCO BCOS EN Documentation, Release v2.2.0

In this tutorial, we have generated a multi-group architecture alliance chain with a network topology of 3 agencies,
2 groups, and 6 nodes.

If you have problems with this tutorial, please view FAQ.

7.3 Download & install

7.3.1 Environment dependency

Dependency of FISCO BCOS generator:

7.3.2 Download & install

Download

$ git clone https://github.com/FISCO-BCOS/generator.git

Install

$ cd generator
$ bash ./scripts/install.sh

Check if it is installed successfully.

$ ./generator -h
# if succeed, output usage: generator xxx

7.3.3 Pull node binaries

Pull the latest fisco-bcos binary files to meta.

$ ./generator --download_fisco ./meta

Check binaries version.

$ ./meta/fisco-bcos -v
# if succeed, output FISCO-BCOS Version : x.x.x-x

7.3. Download & install 209



FISCO BCOS EN Documentation, Release v2.2.0

PS：Source code compilation node binaries user need only to put the compiled binaries to meta directory.

7.4 Config file

The config files of FISCO BCOS generator are placed under ./conf folder, including group’s genesis block config
file group_genesis.ini, node config file node_deployment.ini.

The user configures node config file folder by operations on files under the conf folder.

7.4.1 Metadata folder meta

The meta folder of FISCO BCOS generator is metadata folder to store fisco-bcos binaries, chain certificate
ca.crt, agency certificate agency.crt, agency private key and node certificate, group genesis block file, and
so on.

The format of stored certificates should be cert_p2pip_port.crt. For example: cert_127.0.0.1_30300.crt.

FISCO BCOS generator will generate nodes config file according to the certificates under the meta folder and the
config files under the conf folder.

7.4.2 group_genesis.ini

Through modifying the configuration of group_genesis.ini, the user generates a configuration of new group
genesis block under the specific directory and meta folder. Such as group.1.genesis.

[group]
group_id=1

[nodes]
;node p2p address of group genesis block
node0=127.0.0.1:30300
node1=127.0.0.1:30301
node2=127.0.0.1:30302
node3=127.0.0.1:30303

Important: Node certificate is needed during generating genesis block. In the above case, the config file needs 4
nodes’ certificates, which are: cert_127.0.0.1_30301.crt, cert_127.0.0.1_30302.crt, cert_127.0.0.1_30303.crt and
cert_127.0.0.1_30304.crt.

7.4.3 node_deployment.ini

Through modifying node_deployment.ini configuration, user can use –build_install_package command to
generate node config file containing no private key under a specific folder. Each section[node] configured
by the user is the needed node config file folder. section[peers] is the p2p information for connection with
other nodes.

For example:

[group]
group_id=1

# Owned nodes
[node0]
p2p_ip=127.0.0.1
rpc_ip=127.0.0.1

(continues on next page)

210 Chapter 7. Enterprise deployment tool



FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

p2p_listen_port=30300
channel_listen_port=20200
jsonrpc_listen_port=8545

[node1]
p2p_ip=127.0.0.1
rpc_ip=127.0.0.1
p2p_listen_port=30301
channel_listen_port=20201
jsonrpc_listen_port=8546

Read the node config command. To generate node certificate and node config file folder will need to read the
config file.

7.4.4 Template folder tpl

The template folder of the generator is as below:

applicationContext.xml # sdk config file
config.ini # node config file template
config.ini.gm # OSCCA node config file template
group.i.genesis # group genesis block template
group.i.ini # group block configuration template
start.sh # start node script template
start_all.sh # start nodes in batch script template
stop.sh # stop node script template
stop_all.sh # stop nodes in batch template

To modify the consensus algorithm of node and the configured default DB, the user only needs to alter the config-
uration of config.ini, re-execute the commands to set relative node information.

For details of FISCO BCOS configuration please check FISCO BCOS config file

7.4.5 P2p node connection file peers.txt

P2P node connection file peers.txt is the node connection information of the other agencies specified when
generating node config file folder. When executing build_install_package command, it’s needed to de-
termine the p2p node connection file peers.txt, according to which node config file folder will start commu-
nication with other nodes.

User that executes generate_all_certificates command generates peers.txt according to the
node_deployment.ini filled under conf directory. The user that adopts other ways to generate certificate
needs to generate p2p node connection file manually and send to peers. The format of the p2p node connection
file is:

127.0.0.1:30300
127.0.0.1:30301

Format like this: node ip:p2p_listen_port

• for multi-agency node communication, the files need to be combined

7.5 Operation Tutorial

FISCO BCOS generator contains multiple operations about node generation, expansion, group division, and cer-
tificate, which are introduced as below:

7.5. Operation Tutorial 211



FISCO BCOS EN Documentation, Release v2.2.0

7.5.1 create_group_genesis (-c)

Operation Tutorial

$ cp node0/node.crt ./meta/cert_127.0.0.1_3030n.crt
...
$ vim ./conf/group_genesis.ini
$ ./generator --create_group_genesis ~/mydata

After the program is executed, group.i.genesis of mgroup.ini will be generated under ~/mydata folder.

The generated group.i.genesis is the Genesis Block of the new group.

Note: In FISCO BCOS 2.0+, each group has one Genesis Block.

7.5.2 build_install_package (-b)

Operation Tutorial

$ vim ./conf/node_deployment.ini
$ ./generator --build_install_package ./peers.txt ~/mydata

After the program is executed, a few file folders named node_hostip_port will be generated under ~/mydata folder
and pushed to the relative server to activate the node.

7.5.3 generate_chain_certificate

$ ./generator --generate_chain_certificate ./dir_chain_ca

Now, user can find root certificate ca.crt and private key ca.key under ./dir_chain_ca folder.

7.5.4 generate_agency_certificate

$ ./generator --generate_agency_certificate ./dir_agency_ca ./chain_ca_dir The_
→˓Agency_Name

Now, user can locate The_Agency_Name folder containing agency certificate agency.crt and private key
agency.key through route ./dir_agency_ca.

7.5.5 generate_node_certificate

$ ./generator --generate_node_certificate node_dir(SET) ./agency_dir node_p2pip_
→˓port

Then user can locate node certificate node.crt and private key node.key through route node_dir.

7.5.6 generate_sdk_certificate

$ ./generator --generate_sdk_certificate ./dir_sdk_ca ./dir_agency_ca

Now user can locate SDK file folder containing SDK certificate sdk.crt and private key sdk.key through
route ./sdk.

212 Chapter 7. Enterprise deployment tool



FISCO BCOS EN Documentation, Release v2.2.0

7.5.7 generate_all_certificates

$ ./generator --generate_all_certificates ./cert

Note: the above command will create node certificate according to ca.crt, agency.crt and agency.key of meta
folder.

• absence of any of the above 3 files will fail the creation of node certificate, and the program will throw an
exception

Once the execution is done, user can find node certificate and private key under ./cert folder, and node certificate
under ./meta folder.

7.5.8 merge_config (-m)

–merge_config command can merge p2p sections of 2 config.ini

For instance, the p2p section in config.ini of A is:

[p2p]
listen_ip = 127.0.0.1
listen_port = 30300
node.0 = 127.0.0.1:30300
node.1 = 127.0.0.1:30301
node.2 = 127.0.0.1:30302
node.3 = 127.0.0.1:30303

The p2p section in config.ini of B is:

[p2p]
listen_ip = 127.0.0.1
listen_port = 30303
node.0 = 127.0.0.1:30300
node.1 = 127.0.0.1:30303
node.2 = 127.0.0.1:30300
node.3 = 127.0.0.1:30301

The command will result in:

[p2p]
listen_ip = 127.0.0.1
listen_port = 30304
node.0 = 127.0.0.1:30300
node.1 = 127.0.0.1:30301
node.2 = 127.0.0.1:30302
node.3 = 127.0.0.1:30303
node.4 = 127.0.0.1:30300
node.5 = 127.0.0.1:30301

For example:

$ ./generator --merge_config ~/mydata/node_A/config.ini ~/mydata/node_B/config.ini

When it works, the p2p sections in config.ini of node_A and node_B will be merged to ~/mydata/node_B/config.ini

7.5.9 deploy_private_key (-d)

–deploy_private_key command will import the private key of nodes with same name to the generated configuration
file folder

7.5. Operation Tutorial 213



FISCO BCOS EN Documentation, Release v2.2.0

For example:

$./generator --deploy_private_key ./cert ./data

If ./cert contains file folders named node_127.0.0.1_30300 and node_127.0.0.1_30301, which are placed with
node private key node.key,

./data contains file folders named node_127.0.0.1_30300 and node_127.0.0.1_30301,

then this command would import private key under./cert to ./data folder

7.5.10 add_peers (-p)

–add_peers command can import the files of assigned peers to the generated node configuration file folder.

For example:

$./generator --add_peers ./meta/peers.txt ./data

If ./data contains configuration file folder named node_127.0.0.1_30300 and node_127.0.0.1_30301, then this
command will import peers file with connection information to the node configuration files config.ini under
./data.

add_group (-a)

–add_group command will import assigned peers file to the generated node configuration file folder.

For example:

$./generator --add_group ./meta/group.2.genesis ./data

If ./data contains configuration file folder named node_127.0.0.1_30300 and node_127.0.0.1_30301, then this
command will import connection information of Group 2 to conf folder of all nodes under ./data.

7.5.11 download_fisco

–download_fisco can download fisco-bcos binary file under assigned section.

For example:

$./generator --download_fisco ./meta

This command will download fisco-bcos executable binary file under ./meta folder.

7.5.12 download_console

–download_consolecan download and control console under assigned section.

For example:

$./generator --download_console ./meta

This command will configure the console under ./meta folder according to node_deployment.ini.

214 Chapter 7. Enterprise deployment tool



FISCO BCOS EN Documentation, Release v2.2.0

7.5.13 get_sdk_file

–get_sdk_file command can acquire sdk.crt, sdk.key, ca.crt and applicationContext.xml that
are needed in configuration of console and sdk under assigned section.

For example:

$./generator --get_sdk_file ./sdk

This command will generate the above configuration file according to node_deployment.ini under ./sdk

7.5.14 version (-v)

–version command can help view the version code of current deployment tool.

$ ./generator --version

7.5.15 help (-h)

User can use -h or –help command to check help list

For example:

$ ./generator -h
usage: generator [-h] [-v] [-b peer_path data_dir] [-c data_dir]

[--generate_chain_certificate chain_dir]
[--generate_agency_certificate agency_dir chain_dir agency_name]
[--generate_node_certificate node_dir agency_dir node_name]
[--generate_sdk_certificate sdk_dir agency_dir] [-g]
[--generate_all_certificates cert_dir] [-d cert_dir pkg_dir]
[-m config.ini config.ini] [-p peers config.ini]
[-a group genesis config.ini]

7.5.16 Operation in OSCCA standard (China)

All the commands in FISCO BCOS generator are adaptable for OSCCA version of fisco-bcos (oscca-
approved encryption). When using this version, every certificate and private key should be prefixed with gm.
The description reads below:

On-off switch (-g command)

Once -g command is executed, all the operations concerning certificates, nodes, and group Genesis Block will
generate the above files of OSCCA standard.

generate certificate

When executing generate_*_certificate together with -g command, the generated certificate will be in OSCCA
standard.

For example:

./generator --generate_all_certificates ./cert -g

Note: The above command will generate node certificate according to gmca.crt, agency certificate gmagency.crt,
and agency private key gmagency.key placed under meta folder.

7.5. Operation Tutorial 215



FISCO BCOS EN Documentation, Release v2.2.0

• Absence of any one of the three files will fail the generation of node certificate, and the program will throw
an exception.

generate group Genesis Block in OSCCA standard

For example:

$ cp node0/gmnode.crt ./meta/gmcert_127.0.0.1_3030n.crt
...
$ vim ./conf/group_genesis.ini
$ ./generator --create_group_genesis ~/mydata -g

After executing this program, the user can locate group.i.genesis in mgroup.ini under ~/mydata folder.

group.i.genesis is the Genesis Block of the new group.

generate node configuration file folder in OSCCA standard

For example:

$ vim ./conf/node_deployment.ini
$ ./generator --build_install_package ./peers.txt ~/mydata -g

After executing the program, multiple folders named node_hostip_port will be generated under ~/mydata folder
and pushed to the relative server to activate the node.

7.5.17 Monitoring design

FISCO BCOS generator has a preset monitoring script in all generated node configuration folders. Warning
information of node will be sent to the IP address assigned by the user after configuration. FISCO BCOS generator
places the monitoring script under the assigned section for node configuration files. If the user assigns the folder
named “data”, then the user can locate it under the monitor folder of the data section.

For example:

$ cd ./data/monitor

Purpose of use:

1. to monitor the status of nodes, to reactive node

2. to acquire block number of node and view information, to ensure the consensus of nodes

3. to analyze printing of node logs in last 1 minutes, to collect critical errors information of printed logs, to
monitor the status of nodes in real-time

4. to assign log file or period, to analyze data of consensus message management, block generation, and
transaction volume and node’s health.

Warning service configuration

Before using this service, the user needs to configure the warning service. Here we take the WeChat notification
of server酱 as an example. You can read the configuration as reference: server酱

The user associates it with personal GitHub account and WeChat account, then uses -s command of this script to
send a warning message to the associated WeChat.

If the user wants to try different services, the user can personalize the service by modifying alarm() {

216 Chapter 7. Enterprise deployment tool

http://sc.ftqq.com/3.version
http://sc.ftqq.com/3.version


FISCO BCOS EN Documentation, Release v2.2.0

# change HTTP server

} function of monitor.sh

Help command

The way to check the usage of the script by the help command

$ ./monitor.sh -h
Usage : bash monitor.sh

-s : send alert to your address
-m : monitor, statistics. default : monitor .
-f : log file to be analyzed.
-o : dirpath
-p : name of the monitored program , default is fisco-bcos
-g : specified the group list to be analyzed
-d : log analyze time range. default : 10(min), it should not bigger than max

→˓value : 60(min).
-r : setting alert receiver
-h : help.

example :
bash monitor.sh -s YourHttpAddr -o nodes -r your_name
bash monitor.sh -s YourHttpAddr -m statistics -o nodes -r your_name
bash monitor.sh -s YourHttpAddr -m statistics -f node0/log/log_2019021314.log -

→˓g 1 2 -r your_name

Command description:

• -s assign the configuration address of warning service. It can be the ip of warning notification.

• -m set monitor mode to statistics or monitor. Monitor is the default mode.

• -f analyze node log

• -o assign location of node

• -p set notification name. “fisco-bcos” is the default one.

• -g assign group to be monitored. All group is defaulted to be monitored.

• -d time scope of log analysis. Default to be within 10 minutes and 60 minutes as the maximum

• -r assign the receiver of warning notification

• -h help command

For example

• use script to monitor status of assigned nodes, send message to receiver Alice:

$ bash monitor.sh -s https://sc.ftqq.com/[SCKEY(登入后可见)].send -o alice/nodes -r
→˓Alice

• use script to collect node information and send message to Alice:

$ bash monitor.sh -s https://sc.ftqq.com/[SCKEY(登入后可见)].send -m statistics -o
→˓alice/nodes -r Alice

• use script to collect information of group 1 and group 2 of specific node log, send message to Alice:

$ bash monitor.sh -s https://sc.ftqq.com/[SCKEY(replace by your code)].send -m
→˓statistics -f node0/log/log_2019021314.log -g 1 2 -o alice/nodes -r Alice

7.5. Operation Tutorial 217



FISCO BCOS EN Documentation, Release v2.2.0

7.5.18 handshake failed checked

The check_certificates.sh script in the scripts folder of FISCO BCOS generator contains anomaly de-
tection with error message handshake failed in node log.

Acquire test script

If the user needs to test node generated by build_chain.sh, the following command can help acquire test
script:

$ curl -LO https://raw.githubusercontent.com/FISCO-BCOS/generator/master/scripts/
→˓check_certificates.sh && chmod u+x check_certificates.sh

The user that deployed node with a generator can acquire script from scripts/check_certificates.sh under the root
directory of the generator.

Test valid date of certificate

-t command of check_certificates.sh can test certificate by comparing the valid date with the current
system time.

Example:

$ ./check_certificates.sh -t ~/certificates.crt

The second parameter can be any x509 certificate that prompt check certificates time
successfully after passing verification or exception if it is failing.

Certificate verification

-v command of check_certificates.sh will verify node certificate according to the root certificate set by
user.

$ ./check_certificates.sh -v ~/ca.crt ~/node.crt

After successful verification, it will prompt use ~/ca.crt verify ~/node.crt successful, or
prompt exception if it is failing.

7.5.19 Node configuration error checking

Acquire script

curl -LO https://raw.githubusercontent.com/FISCO-BCOS/FISCO-BCOS/master/tools/
→˓check_node_config.sh && chmod u+x check_node_config.sh

使使使用用用

Using the following command, the script -p option specifies the node path, and the script will analyze the config-
uration errors based on config. ini under the path.

bash check_node_config.sh -p node_127.0.0.1_30300

218 Chapter 7. Enterprise deployment tool



CHAPTER 8

Web3SDK

Web3SDK provides the Java API for FISCO BCOS. You can easily and quickly develop your blockchain applica-
tions based on the Web3SDK. The version only supports FISCO BCOS 2.0+. For Web3SDK 1.2.x please check
Web3SDK 1.2.x Documentation.

Main features of version 2.0+ includes:

• provide Java API to call FISCO BCOS JSON-RPC

• provide pre-compiled contracts to manage the blockchain

• provide secure and efficient message channel with AMOP

• support OSCCA standard

8.1 Environment requirements

Important:

• java version

JDK8 or above version is required. Because the lack of JCE(Java Cryptography Extension) of Open-
JDK in YUM repository of CentOS will fail the connection between Web3SDK and nodes, we rec-
ommend users to download it from OpenJDK website when it is CentOS system. Download here
Installation Guide

• FISCO BCOS environment building

please check FISCO BCOS installation guide

• network connectivity

using telnet command to test if channel_listen_port of nodes connected with Web3SDK is open. If
not, please check the network connectivity and security strategy.

8.2 Import SDK to java application

Import SDK to java application through gradle or maven

219

https://github.com/FISCO-BCOS/web3sdk
https://fisco-bcos-documentation.readthedocs.io/zh_CN/release-1.3/docs/web3sdk/config_web3sdk.html
https://openjdk.java.net/
https://jdk.java.net/java-se-ri/8
https://openjdk.java.net/install/index.html
../installation.html


FISCO BCOS EN Documentation, Release v2.2.0

gradle:

compile ('org.fisco-bcos:web3sdk:2.1.0')

maven:

<dependency>
<groupId>org.fisco-bcos</groupId>
<artifactId>web3sdk</artifactId>
<version>2.1.0</version>

</dependency>

Because the relative jar archive of the solidity compiler of Ethereum is imported, we need to add a remote reposi-
tory of Ethereum in the gradle configuration file build.gradle of the java application.

repositories {
mavenCentral()
maven { url "https://dl.bintray.com/ethereum/maven/" }

}

Note: if the downloading of the dependent solcJ-all-0.4.25.jar is too slow, you can check here for help.

8.3 Configuration of SDK

8.3.1 FISCO BCOS node certificate configuration

FISCO BCOS requires SDK to pass two-way authentication on certificate(ca.crt、sdk.crt) and private
key(sdk.key) when connecting with nodes. Therefore, we need to copy ca.crt, sdk.crt and sdk.key under
nodes/${ip}/sdk folder of node to the resource folder of the project for SDK to connect with nodes.(There
are only node.crt and node.key before FISCO BCOS version 2.1. Rename them to sdk.crt and sdk.
key to compatible with latest SDK version)

8.3.2 Configuration of config file

The config file of java application should be configured. It is noteworthy that FISCO BCOS 2.0+ supports Multi-
group function, and SDK needs to configure the nodes of the group. The configuration process will be exemplified
in this chapter by Spring and Spring Boot project.

8.3.3 Configuration of Spring project

The following picture shows how applicationContext.xml is configured in Spring project.

<?xml version="1.0" encoding="UTF-8" ?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:p="http://

→˓www.springframework.org/schema/p"
xmlns:tx="http://www.springframework.org/schema/tx" xmlns:aop="http://

→˓www.springframework.org/schema/aop"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/tx

http://www.springframework.org/schema/tx/spring-tx-2.5.xsd
http://www.springframework.org/schema/aop

http://www.springframework.org/schema/aop/spring-aop-2.5.xsd">
(continues on next page)

220 Chapter 8. Web3SDK

../manual/console.html#jar


FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

<bean id="encryptType" class="org.fisco.bcos.web3j.crypto.EncryptType">
<constructor-arg value="0"/> <!-- 0:standard 1:guomi -->

</bean>

<bean id="groupChannelConnectionsConfig" class="org.fisco.bcos.channel.
→˓handler.GroupChannelConnectionsConfig">

<property name="caCert" value="ca.crt" />
<property name="sslCert" value="sdk.crt" />
<property name="sslKey" value="sdk.key" />
<property name="allChannelConnections">

<list> <!-- each group needs to configure a beam, each
→˓group can configure multiple nodes-->

<bean id="group1" class="org.fisco.bcos.channel.
→˓handler.ChannelConnections">

<property name="groupId" value="1" /> <!--
→˓groupID -->

<property name="connectionsStr">
<list>

<value>127.0.0.1:20200</
→˓value> <!-- IP:channel_port -->

<value>127.0.0.1:20201</
→˓value>

</list>
</property>

</bean>
<bean id="group2" class="org.fisco.bcos.channel.

→˓handler.ChannelConnections">
<property name="groupId" value="2" /> <!--

→˓groupID -->
<property name="connectionsStr">

<list>
<value>127.0.0.1:20202</

→˓value>
<value>127.0.0.1:20203</

→˓value>
</list>

</property>
</bean>

</list>
</property>

</bean>

<bean id="channelService" class="org.fisco.bcos.channel.client.Service"
→˓depends-on="groupChannelConnectionsConfig">

<property name="groupId" value="1" /> <!-- configure and connect
→˓group 1 -->

<property name="agencyName" value="fisco" /> <!-- configure agency
→˓name -->

<property name="allChannelConnections" ref=
→˓"groupChannelConnectionsConfig"></property>

</bean>

</beans>

Configuration items of applicationContext.xml:

• encryptType: the switch of oscca algorithm (default as 0)

– 0: not use oscca algorithm for transactions

– 1: use oscca algorithm for transactions (switch on oscca algorithm, nodes will be in oscca standard,
for reference of building oscca-standard FISCO BCOS blockchain please check here)

8.3. Configuration of SDK 221



FISCO BCOS EN Documentation, Release v2.2.0

• groupChannelConnectionsConfig:

– configure the group to be connected, which can be one or more, each should be given a group ID

– each group configures one or more nodes, set listen_ip and channel_listen_port of
[rpc] in node config file config.ini.

– caCert for configuring chain CA certificate path

– sslCert is used to configure the certificate path used by SDK

– sslKey is used to configure the private key path corresponding to the certificate used by SDK

• channelService: configure the the group connected with SDK through the given group ID, which is in the
configuration of groupChannelConnectionsConfig. SDK will be connected with each node of the group and
randomly choose one node to send request.

Note: Some plugins may not be installed when the project is downloading for the first time, and the code will
report an error. When you first use the Lombok toolkit on IDEA, follow these steps:

• Enter settings->Plugins->Marketplace->Select to install Lombok plugin

• Enter settings->Compiler->Annotation Processors->Check Enable annotation processing

8.3.4 Configuration of Spring Boot project

The configuration of application.yml in Spring Boot is exemplified below.

encrypt-type: # 0:standard, 1:guomi
encrypt-type: 0

group-channel-connections-config:
caCert: ca.crt
sslCert: sdk.crt
sslKey: sdk.key
all-channel-connections:
- group-id: 1 #group ID

connections-str:
- 127.0.0.1:20200 # node listen_ip:channel_listen_port
- 127.0.0.1:20201

- group-id: 2
connections-str:
- 127.0.0.1:20202 # node listen_ip:channel_listen_port
- 127.0.0.1:20203

channel-service:
group-id: 1 # The specified group to which the SDK connects
agency-name: fisco # agency name

The configuration items of application.yml corresponds with applicationContext.xml. For de-
tailed introduction please check the configuration description of applicationContext.xml.

8.4 Operation of SDK

8.4.1 Guide for development of Spring

to call API of SDK (check the settings of Web3SDK API list or related blockchain data).

call API of SDK Web3j

load the config file, connect SDK with nodes, acquire web3j object and call API. The codes are exemplified here:

222 Chapter 8. Web3SDK



FISCO BCOS EN Documentation, Release v2.2.0

//read config file, start connection between SDK and nodes
ApplicationContext context = new ClassPathXmlApplicationContext(

→˓"classpath:applicationContext.xml");
Service service = context.getBean(Service.class);
service.run();
ChannelEthereumService channelEthereumService = new ChannelEthereumService();
channelEthereumService.setChannelService(service);

//acquire Web3j object
Web3j web3j = Web3j.build(channelEthereumService, service.getGroupId());
//call API getBlockNumber through Web3j object
BigInteger blockNumber = web3j.getBlockNumber().send().getBlockNumber();
System.out.println(blockNumber);

Note: The transaction process of SDK is default limited to 60 seconds. Transactions with no response in 60
seconds will be considered time out. The timeline can be modified through ChannelEthereumService.
Here is the example:

// set the transaction timeline to 100000 milliseconds， namely 100 second
channelEthereumService.setTimeout(100000);

call API of SDK Precompiled

load config file, connect SDK with nodes, acquire Precompiled Service object of SDK and call API. The codes
are as below:

//read config file, connect SDK with nodes and acquire Web3j object
ApplicationContext context = new ClassPathXmlApplicationContext(

→˓"classpath:applicationContext.xml");
Service service = context.getBean(Service.class);
service.run();
ChannelEthereumService channelEthereumService = new ChannelEthereumService();
channelEthereumService.setChannelService(service);
Web3j web3j = Web3j.build(channelEthereumService, service.getGroupId());
String privateKey =

→˓"b83261efa42895c38c6c2364ca878f43e77f3cddbc922bf57d0d48070f79feb6";
//fill in user private key for signature in transactions
Credentials credentials = GenCredential.create(privateKey);
//acquire SystemConfigService object
SystemConfigService systemConfigService = new SystemConfigService(web3j,

→˓credentials);
//call API setValueByKey through SystemConfigService object
String result = systemConfigService.setValueByKey("tx_count_limit", "2000");
//call API getSystemConfigByKey through Web3j object
String value = web3j.getSystemConfigByKey("tx_count_limit").send().

→˓getSystemConfigByKey();
System.out.println(value);

Create and use specific external account

sdk needs an external account to send transactions. Here is a way to create a external account.

//create regular external account
EncryptType.encryptType = 0;
//create OSCCA external account, which is needed when sending transaction to OSCCA-
→˓standard blockchain nodes
// EncryptType.encryptType = 1;
Credentials credentials = GenCredential.create();

(continues on next page)

8.4. Operation of SDK 223



FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

//account address
String address = credentials.getAddress();
//account private key
String privateKey = credentials.getEcKeyPair().getPrivateKey().toString(16);
//account public key
String publicKey = credentials.getEcKeyPair().getPublicKey().toString(16);

Use specific external account

//Set specific external account by specifying the private key
Credentials credentials = GenCredential.create(privateKey);

Load private key file

After the script get_accounts.sh generates PEM or PKCS12 private key file (the use of get-account script
is introduced in Account management document), the account can be operated through loading PEM or PKCS12
private key file. There are 2 ways to load private key: P12Manager and PEMManager. P12Manager is to load
PKCS12 private key file; PEMManager is to load PEM private key file.

• P12Manager example: Configure private key file route and password of PKCS12 account in application-
Context.xml

<bean id="p12" class="org.fisco.bcos.channel.client.P12Manager" init-method="load"
→˓>

<property name="password" value="123456" />
<property name="p12File" value=

→˓"classpath:0x0fc3c4bb89bd90299db4c62be0174c4966286c00.p12" />
</bean>

development code

//load Bean
ApplicationContext context = new ClassPathXmlApplicationContext(
→˓"classpath:applicationContext.xml");
P12Manager p12 = context.getBean(P12Manager.class);
//offer password to get ECKeyPair, password is set when creating p12 account file
ECKeyPair p12KeyPair = p12.getECKeyPair(p12.getPassword());

//output private key and public key in hexadecimal string
System.out.println("p12 privateKey: " + p12KeyPair.getPrivateKey().toString(16));
System.out.println("p12 publicKey: " + p12KeyPair.getPublicKey().toString(16));

//generate Credentials for web3sdk
Credentials credentials = Credentials.create(p12KeyPair);
System.out.println("p12 Address: " + credentials.getAddress());

• PEMManager example

Configure private key route of PEM account in applicationContext.xml

<bean id="pem" class="org.fisco.bcos.channel.client.PEMManager" init-method="load"
→˓>

<property name="pemFile" value=
→˓"classpath:0x0fc3c4bb89bd90299db4c62be0174c4966286c00.pem" />
</bean>

load code

224 Chapter 8. Web3SDK



FISCO BCOS EN Documentation, Release v2.2.0

//load Bean
ApplicationContext context = new ClassPathXmlApplicationContext(
→˓"classpath:applicationContext-keystore-sample.xml");
PEMManager pem = context.getBean(PEMManager.class);
ECKeyPair pemKeyPair = pem.getECKeyPair();

//output private key and public key in hexadecimal string
System.out.println("PEM privateKey: " + pemKeyPair.getPrivateKey().toString(16));
System.out.println("PEM publicKey: " + pemKeyPair.getPublicKey().toString(16));

//generate Credentials for web3sdk
Credentials credentialsPEM = Credentials.create(pemKeyPair);
System.out.println("PEM Address: " + credentialsPEM.getAddress());

To deploy and call contract through SDK

Prepare java contract file

Console offers a contract compiler for developers to compile the solidity contract to java contract. For operation
steps please check here.

Deploy and call contract

The core function of SDK is to deploy/load contract, and to call API of contract to realize transactions. The
deployment of contract calls the deploy method of java class and obtains contract object, which can call getCon-
tractAddress method to get the address for contract or other methods for other functions. If the contract has been
deployment already, contract object can be loaded by calling load method according to the address of the deployed
contract, other methods of which can also be called.

//read config file, connect SDK with nodes, get web3j object
ApplicationContext context = new ClassPathXmlApplicationContext(

→˓"classpath:applicationContext.xml");
Service service = context.getBean(Service.class);
service.run();
ChannelEthereumService channelEthereumService = new ChannelEthereumService();
channelEthereumService.setChannelService(service);
channelEthereumService.setTimeout(10000);
Web3j web3j = Web3j.build(channelEthereumService, service.getGroupId());
//prepare parameters for deploying and calling contract
BigInteger gasPrice = new BigInteger("300000000");
BigInteger gasLimit = new BigInteger("300000000");
String privateKey =

→˓"b83261efa42895c38c6c2364ca878f43e77f3cddbc922bf57d0d48070f79feb6";
//specify external account private key for transaction signature
Credentials credentials = GenCredential.create(privateKey);
//deploy contract
YourSmartContract contract = YourSmartContract.deploy(web3j, credentials, new

→˓StaticGasProvider(gasPrice, gasLimit)).send();
//load contract according to the contract address
//YourSmartContract contract = YourSmartContract.load(address, web3j,

→˓credentials, new StaticGasProvider(gasPrice, gasLimit));
//send transaction by calling contract method
TransactionReceipt transactionReceipt = contract.someMethod(<param1>, ...).

→˓send();
//check data status of the contract by inquiry contract method
Type result = contract.someMethod(<param1>, ...).send();

8.4. Operation of SDK 225

../manual/console.html#id6


FISCO BCOS EN Documentation, Release v2.2.0

8.4.2 Guide for Spring Boot development

We provide spring-boot-starter as an example. Spring Boot and Spring are similar in development process, except
the distinction in config file. Here we will provide some test examples. For detail description on the projects
please check the README documents.

8.4.3 Operations on OSCCA function of SDK

• Preconditions: FISCO BCOS blockchain in OSCCA standard, to build it using OSCCA algorithm, please
check the operation tutorial.

• switch on OSCCA function: set encryptType as 1 in application.xml/application.yml con-
figuration.

• The private key is loaded using the GenCredential class (for both OSCCA standard and ECDSA stan-
dard), and the Credential class is only for loading ECDSA standard.

The OSCCA function of SDK calls the API in the same way as the ECDSA SDK. The difference is that the
OSCCA function of SDK needs to generate the OSCCA version Java contract file. Compile the OSCCA version
Java contract file reference here.

8.5 Web3SDK API

Web3SDK API is separated into Web3j API and Precompiled Service API. Through Web3j API we can check the
blockchain status, send/inquiry transactions; Precompiled Service API is to manage configurations and to realize
some functions.

8.5.1 Web3j API

Web3j API is the RPC API of FISCO BCOS called by web3j object, and it has the same API name with RPC API.
Please check RPC API Documentation.

8.5.2 Precompiled Service API

8.5.3 Precompiled Service API

Precomplied contract is an efficient smart contract realized in C++ on FISCO BCOS platform. SDK provides
java interface of the precompiled contract, through calling which console can execute commands. For operational
reference you can check the guide for console operations. SDK also provides Precompiled Servide class, includ-
ing PermissionService for distributed permission control, CnsService for CNS, SystemConfigService for system
property configuration and ConsensusService for node type configuration. The related error codes are collected
here: Precompiled Service API Error Codes

PermissionService

SDK supports distributed permission control. PermissionService can configure permission information. The APIs
are here:

• public String grantUserTableManager(String tableName, String address): set permissions according
to user list name and exterior account address.

• public String revokeUserTableManager(String tableName, String address): revoke permissions ac-
cording to user list name and exterior account address.

• public List<PermissionInfo> listUserTableManager(String tableName): inquire permission record list
according to the user list name (each record contains exterior account address and effective block number).

226 Chapter 8. Web3SDK

https://github.com/FISCO-BCOS/spring-boot-starter
../manual/console.html#contract-compilation-tool
../api.html#precompiled-service-api


FISCO BCOS EN Documentation, Release v2.2.0

• public String grantDeployAndCreateManager(String address): grant permission for exterior account
to deploy contract and create user list.

• public String revokeDeployAndCreateManager(String address): revoke permission for exterior account
to deploy contract and create user list.

• public List<PermissionInfo> listDeployAndCreateManager(): inquire the permission record list for ex-
terior account to deploy contract and create user list.

• public String grantPermissionManager(String address): grant permission to exterior accounts for per-
mission control.

• public String revokePermissionManager(String address): revoke permission to exterior accounts for
permission control

• public List<PermissionInfo> listPermissionManager(): inquire permission record list of exterior ac-
counts on permission control.

• public String grantNodeManager(String address): grant permission to exterior accounts for node man-
agement.

• public String revokeNodeManager(String address): revoke permission to exterior accounts for node
management.

• public List<PermissionInfo> listNodeManager(): inquire permission records on node management.

• public String grantCNSManager(String address): grant permission to exterior account for CNS.

• public String revokeCNSManager(String address): revoke permission to exterior account for CNS.

• public List<PermissionInfo> listCNSManager(): inquire permission records of CNS

• public String grantSysConfigManager(String address): grant permission to exterior account for param-
eters management.

• public String revokeSysConfigManager(String address): revoke permission to exterior account for pa-
rameters management.

• public List<PermissionInfo> listSysConfigManager(): inquire permission records of parameters man-
agement.

CnsService

SDK supports CNS. CnsService can configure CNS. The APIs are here:

• String registerCns(String name, String version, String address, String abi): register CNS according to
contract name, version, address and contract abi.

• String getAddressByContractNameAndVersion(String contractNameAndVersion): inquire contract
address according to contract name and version (connected with colon). If lack of contract version, it is
defaulted to be the latest version.

• List<CnsInfo> queryCnsByName(String name): inquire CNS information according to contract name.

• List<CnsInfo> queryCnsByNameAndVersion(String name, String version): inquire CNS information
according to contract name and version.

SystemConfigService

SDK offers services for system configuration. SystemConfigService can configure system property value (cur-
rently support tx_count_limit and tx_gas_limit)。 The API is here:

• String setValueByKey(String key, String value): set value according to the key（to check the value,
please refer to getSystemConfigByKey in Web3j API).

8.5. Web3SDK API 227



FISCO BCOS EN Documentation, Release v2.2.0

ConsensusService

SDK supports configuration of node type. ConsensusService is used to set node type. The APIs are here:

• String addSealer(String nodeId): set the node as consensus node according to node ID.

• String addObserver(String nodeId): set the node as observer node according to node ID.

• String removeNode(String nodeId): set the node as free node according to node ID.

CRUDService

SDK supports CRUD (Create/Retrieve/Updata/Delete) operations. CRUDService of table include create, insert,
retrieve, update and delete. Here are its APIs:

• int createTable(Table table)：：： create table and table object, set the name of table, main key field and other
fields; names of other fields are character strings separated by comma; return table status value, return 0
when it is created successfully.

• int insert(Table table, Entry entry)：：： insert records, offer table object and Entry object, set table name
and main key field value; Entry is map object, offer inserted field name and its value, main key field is
necessary; return the number of inserted records.

• int update(Table table, Entry entry, Condition condition)：：： update records, offer table object, Entry
object, Condition object. Table object needs to be set with table name and main key field value; Entry is
map object, offer new field name and value; Condition object can set new conditions； return the number
of new records.

• List<Map<String, String>> select(Table table, Condition condition)：：： retrieve records, offer table ob-
ject and Condition object. Table object needs to be set with table name and main key field value; Condition
object can set condition for retrieving; return the retrieved record.

• int remove(Table table, Condition condition)：：： remove records, offer table object and Condition object.
Table object needs to be set with table name and main key field value; Condition object can set conditions
for removing; remove the number of removed records.

• Table desc(String tableName)：：： inquire table information according to table name, mainly contain main
key and other property fields; return table type, mainly containing field name of main key and other property.

8.6 Transaction analysis

The transaction in FISCO BCOS is the request data toward blockchain system to deploy contract, call contract
API, maintain contract lifecycle and manage assets, value exchange, etc. There will be transaction receipt after
it is confirmed: Transaction receipt and Transaction are all stored in block to record the information generated
during transaction execution, like result code, log, consumed gas amount, etc. User can use transaction hash to
retrieve transaction receipt and know whether the transaction is accomplished.

Transaction receipt contains three key fields: input (included in the FISCO BCOS 2.0.0 and above), output, logs.

Transaction analysis can help user to analyze the 3 fields as json data and java object.

8.6.1 API description

Code packet route org.fisco.bcos.web3j.tx.txdecode, use TransactionDecoderFactory fac-
tory class to build transaction decoder TransactionDecoder. There are 2 ways:

1. TransactionDecoder buildTransactionDecoder(String abi, String bin);

abi：contract ABI

bin：contract bin, can import empty string “” when not available

228 Chapter 8. Web3SDK

../design/security_control/node_management.html#id6
https://fisco-bcos-documentation.readthedocs.io/zh_CN/latest/docs/api.html#gettransactionreceipt
https://fisco-bcos-documentation.readthedocs.io/zh_CN/latest/docs/api.html#gettransactionbyhash


FISCO BCOS EN Documentation, Release v2.2.0

2. TransactionDecoder buildTransactionDecoder(String contractName);

contractName：contract name, create solidity directory under root directory of the application, put the
contract under solidity directory and get transaction decoder through contract name.

Transaction decoder TransactionDecoder API list:

1. String decodeInputReturnJson(String input)

Analyze input, seal the result as json character string in json format

{"data":[{"name":"","type":"","data":} ... ],"function":"","methodID":""}

function : function signature string methodID : function selector

2. InputAndOutputResult decodeInputReturnObject(String input)

Analyze input, return java List object, the InputAndOutputResult and ResultEntity structure as
follows:

public class InputAndOutputResult {
private String function; // function signature
private String methodID; // methodID
private List<ResultEntity> result; // return ResultEntity object list

}

public class ResultEntity {
private String name; // field name, analyze output and return with empty

→˓string
private String type; // field type
private Object data; // field value

}

3. String decodeOutputReturnJson(String input, String output)

Analyze output, seal the result as json string, the same format with decodeInputReturnJson

4. InputAndOutputResult decodeOutputReturnObject(String input, String
output)

Analyze output, return java List object

5. String decodeEventReturnJson(List<Log> logList)

Analyze event list, seal the result as json string with json format

{"event1 signature":[[{"name":"_u","type":"","data":}...]...],"event2 signature
→˓":[[{"name":"_u","type":"","data":}...]...]...}

6. Map<String, List<List<EventResultEntity>>> decodeEventReturnObject(List<Log>
logList)The EventResultEntity structure as follows:

public class EventResultEntity extends ResultEntity {
private boolean indexed; // indexed flag， if true it presents the event

→˓field modified by the indexed keyword
}

Analyze event list, return java Map object, key is event signature string, List<List> is all the event parameter
information in the transaction.

TransactionDecoder provides methods of returning json string and java object respectively to input, output
and event logs. Json string helps client end to easily deal data. Java object helps to easily deal data for server.

8.6.2 Example

Here is an example of TxDecodeSample contract to describe the use of API:

8.6. Transaction analysis 229

https://solidity.readthedocs.io/en/develop/abi-spec.html#function-selector
https://solidity.readthedocs.io/en/develop/abi-spec.html#events


FISCO BCOS EN Documentation, Release v2.2.0

pragma solidity ^0.4.24;
contract TxDecodeSample
{

event Event1(uint256 _u,int256 _i,bool _b,address _addr,bytes32 _bs32, string _
→˓s,bytes _bs);

event Event2(uint256 _u,int256 _i,bool _b,address _addr,bytes32 _bs32, string _
→˓s,bytes _bs);

function echo(uint256 _u,int256 _i,bool _b,address _addr,bytes32 _bs32, string
→˓_s,bytes _bs) public constant returns (uint256,int256,bool,address,bytes32,
→˓string,bytes)

{
Event1(_u, _i, _b, _addr, _bs32, _s, _bs);
return (_u, _i, _b, _addr, _bs32, _s, _bs);

}

function do_event(uint256 _u,int256 _i,bool _b,address _addr,bytes32 _bs32,
→˓string _s,bytes _bs) public

{
Event1(_u, _i, _b, _addr, _bs32, _s, _bs);
Event2(_u, _i, _b, _addr, _bs32, _s, _bs);

}
}

Use buildTransactionDecoder to build the transaction decoder of TxDecodeSample contract.

// TxDecodeSample合约ABI
String abi = "[{\"constant\":false,\"inputs\":[{\"name\":\"_u\",\"type\":\"uint256\
→˓"},{\"name\":\"_i\",\"type\":\"int256\"},{\"name\":\"_b\",\"type\":\"bool\"},{\
→˓"name\":\"_addr\",\"type\":\"address\"},{\"name\":\"_bs32\",\"type\":\"bytes32\"}
→˓,{\"name\":\"_s\",\"type\":\"string\"},{\"name\":\"_bs\",\"type\":\"bytes\"}],\
→˓"name\":\"do_event\",\"outputs\":[],\"payable\":false,\"stateMutability\":\
→˓"nonpayable\",\"type\":\"function\"},{\"anonymous\":false,\"inputs\":[{\"indexed\
→˓":false,\"name\":\"_u\",\"type\":\"uint256\"},{\"indexed\":false,\"name\":\"_i\",
→˓\"type\":\"int256\"},{\"indexed\":false,\"name\":\"_b\",\"type\":\"bool\"},{\
→˓"indexed\":false,\"name\":\"_addr\",\"type\":\"address\"},{\"indexed\":false,\
→˓"name\":\"_bs32\",\"type\":\"bytes32\"},{\"indexed\":false,\"name\":\"_s\",\
→˓"type\":\"string\"},{\"indexed\":false,\"name\":\"_bs\",\"type\":\"bytes\"}],\
→˓"name\":\"Event1\",\"type\":\"event\"},{\"anonymous\":false,\"inputs\":[{\
→˓"indexed\":false,\"name\":\"_u\",\"type\":\"uint256\"},{\"indexed\":false,\"name\
→˓":\"_i\",\"type\":\"int256\"},{\"indexed\":false,\"name\":\"_b\",\"type\":\"bool\
→˓"},{\"indexed\":false,\"name\":\"_addr\",\"type\":\"address\"},{\"indexed\
→˓":false,\"name\":\"_bs32\",\"type\":\"bytes32\"},{\"indexed\":false,\"name\":\"_
→˓s\",\"type\":\"string\"},{\"indexed\":false,\"name\":\"_bs\",\"type\":\"bytes\"}
→˓],\"name\":\"Event2\",\"type\":\"event\"},{\"constant\":true,\"inputs\":[{\"name\
→˓":\"_u\",\"type\":\"uint256\"},{\"name\":\"_i\",\"type\":\"int256\"},{\"name\":\
→˓"_b\",\"type\":\"bool\"},{\"name\":\"_addr\",\"type\":\"address\"},{\"name\":\"_
→˓bs32\",\"type\":\"bytes32\"},{\"name\":\"_s\",\"type\":\"string\"},{\"name\":\"_
→˓bs\",\"type\":\"bytes\"}],\"name\":\"echo\",\"outputs\":[{\"name\":\"\",\"type\
→˓":\"uint256\"},{\"name\":\"\",\"type\":\"int256\"},{\"name\":\"\",\"type\":\
→˓"bool\"},{\"name\":\"\",\"type\":\"address\"},{\"name\":\"\",\"type\":\"bytes32\
→˓"},{\"name\":\"\",\"type\":\"string\"},{\"name\":\"\",\"type\":\"bytes\"}],\
→˓"payable\":false,\"stateMutability\":\"view\",\"type\":\"function\"}]";
String bin = "";
TransactionDecoder txDecodeSampleDecoder = TransactionDecoder.
→˓buildTransactionDecoder(abi, bin);

230 Chapter 8. Web3SDK



FISCO BCOS EN Documentation, Release v2.2.0

Analyze input

Call function echo(uint256 _u,int256 _i,bool _b,address _addr,bytes32
_bs32, string _s,bytes _bs) API, input parameter [ 111111 -1111111 false
0x692a70d2e424a56d2c6c27aa97d1a86395877b3a abcdefghiabcdefghiabcdefghiabhji
章鱼小丸子ljjkl;adjsfkljlkjl sadfljkjkljkl ]

// function echo(uint256 _u,int256 _i,bool _b,address _addr,bytes32 _bs32, string _
→˓s,bytes _bs)
String input =
→˓“0x406d373b000000000000000000000000000000000000000000000000000000000001b207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffef0bb90000000000000000000000000000000000000000000000000000000000000000000000000000000000000000692a70d2e424a56d2c6c27aa97d1a86395877b3a6162636465666768696162636465666768696162636465666768696162686a6900000000000000000000000000000000000000000000000000000000000000e000000000000000000000000000000000000000000000000000000000000001400000000000000000000000000000000000000000000000000000000000000021e7aba0e9b1bce5b08fe4b8b8e5ad906c6a6a6b6c3b61646a73666b6c6a6c6b6a6c00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000d736164666c6a6b6a6b6c6a6b6c00000000000000000000000000000000000000”;
→˓

String jsonResult = txDecodeSampleDecoder.decodeInputReturnJson(input);
InputAndOutputResult objectResult = txDecodeSampleDecoder.
→˓decodeInputReturnObject(input);
System.out.println("json => \n" + jsonResult);
System.out.println("object => \n" + objectResult);

Output:

json =>
{

"function": "echo(uint256,int256,bool,address,bytes32,string,bytes)",
"methodID": "0x406d373b",
"result": [
{

"name": "_u",
"type": "uint256",
"data": 111111

},
{

"name": "_i",
"type": "int256",
"data": -1111111

},
{

"name": "_b",
"type": "bool",
"data": false

},
{

"name": "_addr",
"type": "address",
"data": "0x692a70d2e424a56d2c6c27aa97d1a86395877b3a"

},
{

"name": "_bs32",
"type": "bytes32",
"data": "abcdefghiabcdefghiabcdefghiabhji"

},
{

"name": "_s",
"type": "string",
"data": "章鱼小丸子ljjkl;adjsfkljlkjl"

},
{

"name": "_bs",
"type": "bytes",
"data": "sadfljkjkljkl"

}
]

}

(continues on next page)

8.6. Transaction analysis 231



FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

object =>
InputAndOutputResult[

function=echo(uint256,
int256,
bool,
address,
bytes32,
string,
bytes),
methodID=0x406d373b,
result=[
ResultEntity[

name=_u,
type=uint256,
data=111111

],
ResultEntity[

name=_i,
type=int256,
data=-1111111

],
ResultEntity[

name=_b,
type=bool,
data=false

],
ResultEntity[

name=_addr,
type=address,
data=0x692a70d2e424a56d2c6c27aa97d1a86395877b3a

],
ResultEntity[

name=_bs32,
type=bytes32,
data=abcdefghiabcdefghiabcdefghiabhji

],
ResultEntity[

name=_s,
type=string,
data=章鱼小丸子ljjkl;adjsfkljlkjl

],
ResultEntity[

name=_bs,
type=bytes,
data=sadfljkjkljkl

]
]

]

Analyze output

Call function echo(uint256 _u,int256 _i,bool _b,address _addr,bytes32
_bs32, string _s,bytes _bs) API, input parameter [ 111111 -1111111 false
0x692a70d2e424a56d2c6c27aa97d1a86395877b3a abcdefghiabcdefghiabcdefghiabhji
章鱼小丸子ljjkl;adjsfkljlkjl sadfljkjkljkl ], echo API returns what is input.

232 Chapter 8. Web3SDK



FISCO BCOS EN Documentation, Release v2.2.0

// function echo(uint256 _u,int256 _i,bool _b,address _addr,bytes32 _bs32, string
→˓_s,bytes _bs) public constant returns (uint256,int256,bool,address,bytes32,
→˓string,bytes)
String input =
→˓“0x406d373b000000000000000000000000000000000000000000000000000000000001b207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffef0bb90000000000000000000000000000000000000000000000000000000000000000000000000000000000000000692a70d2e424a56d2c6c27aa97d1a86395877b3a6162636465666768696162636465666768696162636465666768696162686a6900000000000000000000000000000000000000000000000000000000000000e000000000000000000000000000000000000000000000000000000000000001400000000000000000000000000000000000000000000000000000000000000021e7aba0e9b1bce5b08fe4b8b8e5ad906c6a6a6b6c3b61646a73666b6c6a6c6b6a6c00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000d736164666c6a6b6a6b6c6a6b6c00000000000000000000000000000000000000”;
→˓

String output =
→˓"000000000000000000000000000000000000000000000000000000000001b207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffef0bb90000000000000000000000000000000000000000000000000000000000000000000000000000000000000000692a70d2e424a56d2c6c27aa97d1a86395877b3a6162636465666768696162636465666768696162636465666768696162686a6900000000000000000000000000000000000000000000000000000000000000e000000000000000000000000000000000000000000000000000000000000001400000000000000000000000000000000000000000000000000000000000000021e7aba0e9b1bce5b08fe4b8b8e5ad906c6a6a6b6c3b61646a73666b6c6a6c6b6a6c00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000d736164666c6a6b6a6b6c6a6b6c00000000000000000000000000000000000000
→˓";

String jsonResult = txDecodeSampleDecoder.decodeOutputReturnJson(input, output);
InputAndOutputResult objectResult = txDecodeSampleDecoder.
→˓decodeOutputReturnObject(input, output);
System.out.println("json => \n" + jsonResult);
System.out.println("object => \n" + objectResult);

Result:

json =>
{

"function": "echo(uint256,int256,bool,address,bytes32,string,bytes)",
"methodID": "0x406d373b",
"result": [
{

"name": "",
"type": "uint256",
"data": 111111

},
{

"name": "",
"type": "int256",
"data": -1111111

},
{

"name": "",
"type": "bool",
"data": false

},
{

"name": "",
"type": "address",
"data": "0x692a70d2e424a56d2c6c27aa97d1a86395877b3a"

},
{

"name": "",
"type": "bytes32",
"data": "abcdefghiabcdefghiabcdefghiabhji"

},
{

"name": "",
"type": "string",
"data": "章鱼小丸子ljjkl;adjsfkljlkjl"

},
{

"name": "",
"type": "bytes",
"data": "sadfljkjkljkl"

}
]

}

(continues on next page)

8.6. Transaction analysis 233



FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

object =>
InputAndOutputResult[

function=echo(uint256,
int256,
bool,
address,
bytes32,
string,
bytes),
methodID=0x406d373b,
result=[
ResultEntity[

name=,
type=uint256,
data=111111

],
ResultEntity[

name=,
type=int256,
data=-1111111

],
ResultEntity[

name=,
type=bool,
data=false

],
ResultEntity[

name=,
type=address,
data=0x692a70d2e424a56d2c6c27aa97d1a86395877b3a

],
ResultEntity[

name=,
type=bytes32,
data=abcdefghiabcdefghiabcdefghiabhji

],
ResultEntity[

name=,
type=string,
data=章鱼小丸子ljjkl;adjsfkljlkjl

],
ResultEntity[

name=,
type=bytes,
data=sadfljkjkljkl

]
]

]

Analyze event logs

Call function do_event(uint256 _u,int256 _i,bool _b,address _addr,bytes32
_bs32, string _s,bytes _bs) API, input parameter [ 111111 -1111111 false
0x692a70d2e424a56d2c6c27aa97d1a86395877b3a abcdefghiabcdefghiabcdefghiabhji
章鱼小丸子ljjkl;adjsfkljlkjl sadfljkjkljkl ], analyze transaction logs

// transactionReceipt is the transaction receipt of calling do_event API
String jsonResult = txDecodeSampleDecoder.decodeEventReturnJson(transactionReceipt.
→˓getLogs());

(continues on next page)

234 Chapter 8. Web3SDK



FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

String mapResult = txDecodeSampleDecoder.decodeEventReturnJson(transactionReceipt.
→˓getLogs());

System.out.println("json => \n" + jsonResult);
System.out.println("map => \n" + mapResult);

Result:

json =>
{

"Event1(uint256,int256,bool,address,bytes32,string,bytes)": [
[

{
"name": "_u",
"type": "uint256",
"data": 111111,
"indexed": false

},
{

"name": "_i",
"type": "int256",
"data": -1111111,
"indexed": false

},
{

"name": "_b",
"type": "bool",
"data": false,
"indexed": false

},
{

"name": "_addr",
"type": "address",
"data": "0x692a70d2e424a56d2c6c27aa97d1a86395877b3a",
"indexed": false

},
{

"name": "_bs32",
"type": "bytes32",
"data": "abcdefghiabcdefghiabcdefghiabhji",
"indexed": false

},
{

"name": "_s",
"type": "string",
"data": "章鱼小丸子ljjkl;adjsfkljlkjl",
"indexed": false

},
{

"name": "_bs",
"type": "bytes",
"data": "sadfljkjkljkl",
"indexed": false

}
]

],
"Event2(uint256,int256,bool,address,bytes32,string,bytes)": [
[

{
"name": "_u",
"type": "uint256",

(continues on next page)

8.6. Transaction analysis 235



FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

"data": 111111,
"indexed": false

},
{

"name": "_i",
"type": "int256",
"data": -1111111,
"indexed": false

},
{

"name": "_b",
"type": "bool",
"data": false,
"indexed": false

},
{

"name": "_addr",
"type": "address",
"data": "0x692a70d2e424a56d2c6c27aa97d1a86395877b3a",
"indexed": false

},
{

"name": "_bs32",
"type": "bytes32",
"data": "abcdefghiabcdefghiabcdefghiabhji",
"indexed": false

},
{

"name": "_s",
"type": "string",
"data": "章鱼小丸子ljjkl;adjsfkljlkjl",
"indexed": false

},
{

"name": "_bs",
"type": "bytes",
"data": "sadfljkjkljkl",
"indexed": false

}
]

]
}

map =>
{

Event1(uint256,
int256,
bool,
address,
bytes32,
string,
bytes)=[
[

EventResultEntity[
name=_u,
type=uint256,
data=111111,
indexed=false

],
EventResultEntity[

name=_i,

(continues on next page)

236 Chapter 8. Web3SDK



FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

type=int256,
data=-1111111,
indexed=false

],
EventResultEntity[

name=_b,
type=bool,
data=false,
indexed=false

],
EventResultEntity[

name=_addr,
type=address,
data=0x692a70d2e424a56d2c6c27aa97d1a86395877b3a,
indexed=false

],
EventResultEntity[

name=_bs32,
type=bytes32,
data=abcdefghiabcdefghiabcdefghiabhji,
indexed=false

],
EventResultEntity[

name=_s,
type=string,
data=章鱼小丸子ljjkl;adjsfkljlkjl,
indexed=false

],
EventResultEntity[

name=_bs,
type=bytes,
data=sadfljkjkljkl,
indexed=false

]
]

],
Event2(uint256,
int256,
bool,
address,
bytes32,
string,
bytes)=[
[

EventResultEntity[
name=_u,
type=uint256,
data=111111,
indexed=false

],
EventResultEntity[

name=_i,
type=int256,
data=-1111111,
indexed=false

],
EventResultEntity[

name=_b,
type=bool,
data=false,
indexed=false

(continues on next page)

8.6. Transaction analysis 237



FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

],
EventResultEntity[

name=_addr,
type=address,
data=0x692a70d2e424a56d2c6c27aa97d1a86395877b3a,
indexed=false

],
EventResultEntity[

name=_bs32,
type=bytes32,
data=abcdefghiabcdefghiabcdefghiabhji,
indexed=false

],
EventResultEntity[

name=_s,
type=string,
data=章鱼小丸子ljjkl;adjsfkljlkjl,
indexed=false

],
EventResultEntity[

name=_bs,
type=bytes,
data=sadfljkjkljkl,
indexed=false

]
]

]
}

8.7 Contract Event Push

Waiting for add. . .

238 Chapter 8. Web3SDK



CHAPTER 9

Blockchain browser

9.1 1. Description

9.1.1 1.1 Introduction

This blockchain browser is compatible with FISCO BCOS 2.0.0. FISCO BCOS 1.2 or 1.3 users please check
v1.2.1.

Blockchain browser is capable of blockchain visualization and real-time presentation. Users can get the informa-
tion of the blockchain through web pages. This browser is only compatible with FISCO BCOS 2.0+. You can
learn the newest features in here. Before using this browser, you may need to learn the groups feature of FISCO
BCOS 2.0+.

239

https://github.com/FISCO-BCOS/fisco-bcos-browser/releases/tag/v1.2.1
https://github.com/FISCO-BCOS/FISCO-BCOS
../what_is_new.html#id2


FISCO BCOS EN Documentation, Release v2.2.0

1.2 Main functional modules

This chapter will give a brief introduction on each module of the browser for all-round understanding. Main
functional modules of the blockchain browser includes: group switch module, configuration module and data
visualization module.

1.2.1 Group switch module

Group switch module is adopted to access blockchain data when switching to different groups in multi-groups
case.

1.2.2 Configuration module

Configuration module includes group configuration, node configuration and contract configuration.

240 Chapter 9. Blockchain browser



FISCO BCOS EN Documentation, Release v2.2.0

1.2.3 Data visualization module

Blockchain browser demonstrates the detail information of specific group on the chain including: overview, block
information and transaction information.

9.2 2. Premises of use

9.2.1 2.1 Group building

Data shown in the blockchain browser is synchronized with blockchain. To synchronize data, initialization config-
uration (adding group information and node information) is needed. So users have to run a FISCO BCOS instance
and build groups before data synchronizing. FISCO BCOS 2.0+ has provided multiple convenient group building
methods.

1. For developers to experience and debug quickly, we recommend the script build_chain.

2. For enterprise applications, FISCO BCOS generator is a more considerable deployment tool.

The distinguish of the above methods lie in that the script build_chain is for better and quicker building expe-
rience and it helps developers generate private key of each node in groups; deployment tool doesn’t automatically
generate private key for safety consideration, and business users need to generate and set by themselves.

9.3 3. Building of blockchain browser

Blockchain browser can be divided into two parts: the back-end service “fisco-bcos-browser” and the front-end
web page “fisco-bcos-browser-front”.

We also provide two ways for browser building in the current version: one-key setup and manual setup.

9.2. 2. Premises of use 241

https://github.com/FISCO-BCOS/FISCO-BCOS


FISCO BCOS EN Documentation, Release v2.2.0

9.3.1 3.1.1 One-click setup

One-click setup is suitable for single-machine deployment of front-end and back-end to experience quickly. The
detail process is introduced in Installation document.

9.3.2 3.1.2 Manual setup

Back-end service building

The back-end service of blockchain browser adopts JAVA back-end service, i.e., Spring Boot. The exactly building
process can be referred in Installation document.

Front-end web page service building

Front-end conducts vue-cli. Also, the tutorial can be found in Installation document.

9.4 4. Initialization environment

9.4.1 4.1 Adding group

Once it is set up, users can access the front-end by typing IP and its port configured by nginx through web browser.
Browser without group initialization will lead to new group configuration page, where the group ID, group name
and group description are needed.

Group ID should be consistent with the specific blockchain. There are many methods to check group ID:

1. acquire rpc interface.

2. console command.

Group name should be meaningful and better understandable as a explanation of group ID.

Group description is the further illustration of the name.

242 Chapter 9. Blockchain browser

../api.html#getgrouplist


FISCO BCOS EN Documentation, Release v2.2.0

9.4.2 4.2 Adding node

The next step, you need to add the node information belong to the group to obtain relative information shown in
blockchain browser. RPC port and P2P port of nodes can be acquired from the file config.ini in the directory of a
specific node.

For easy use, the newly added group will synchronize the information of shared node which configured by other
groups before.

9.4.3 4.3 Adding contract

On this version, the browser provides the function of contract analysis, which requires users to import all contracts
the group had deployed before. User can upload zip package (only support one-level directory) to solve namesake
contract issues.

Steps of import

4.3.1 Import contract

1. Contract is required to be uploaded as *.sol file or zip package.

2. Zip package is compatible with one-level directory at most and defaulted to be uploaded to root directory.
Zip package can only contain *.sol files.

4.3.2 Compile contract

9.4. 4. Initialization environment 243



FISCO BCOS EN Documentation, Release v2.2.0

9.5 5. Functions introduction

9.5.1 5.1 Blockchain overview

5.1.1 Overall overview

Overall overview includes block number of the group, transaction volume, processing transaction amount and the
PBFT view.

5.1.2 Transaction volume in 15 days

The transactions of the group in 15 days are shown in the line chart.

5.1.3 Node overview

Node overview includes node ID, current block height, the PBFT view and node status.

5.1.4 Block overview

Block overview includes the information of the latest four blocks, including block height, block generator, gener-
ation time and transaction volume on the block.

5.1.5 Transaction overview

Transaction overview includes the latest four transactions, including transaction hash, transaction time, transaction
sender & receiver. The information invoked by transactions can also be shown if the related contract is imported
correctly.

244 Chapter 9. Blockchain browser



FISCO BCOS EN Documentation, Release v2.2.0

9.5.2 5.2 Block information

Block information includes pages of block list and block details.

9.5.3 5.3 Transaction information

Transaction information includes pages of transaction list and transaction details.

5.3.1 Transaction analysis

After contract is uploaded and compiled, blockchain browser can analyze the transaction method names and
parameters. The analysis of the browser is based on correct import of contract. Therefore, when using JAVA or JS
to call contract, please save the correct version of contract.

5.3.2 Event analysis

After contract is uploaded and compiled, blockchain browser can analyze event method names and parameters in
the transaction receipts.

9.5. 5. Functions introduction 245



FISCO BCOS EN Documentation, Release v2.2.0

246 Chapter 9. Blockchain browser



CHAPTER 10

JSON-RPC API

The following examples in this chapter adopt the curl command, which is a data transfer tool that runs the com-
mand line by the URL language. JSON-RPC API of FISCO BCOS can be accessed by sending HTTP post re-
quest through curl commands. The URL address of the curl command is set as [listen_ip] and [jsonrpc
listen port] of [rpc] in a node config file. To format the json data, jq is used as a formatter. For the error
codes, please check the RPC Design Documentation. For the transaction receipt status, please check here.

10.1 getClientVersion

Returns the current node version.

10.1.1 Parameters

none

10.1.2 Returns

• object - An object with version data:

– Build Time: string - compile time

– Build Type: string - compile machine environment

– Chain Id: string - blockchain id

– FISCO-BCOS Version: string - The version of the node

– Git Branch: string - version branch

– Git Commit Hash: string - latest commit hash

– Supported Version: string - The supported version of the node

• Example

247

https://curl.haxx.se/
https://stedolan.github.io/jq/
design/rpc.html#json-rpc
./api.html#transaction-receipt-status-list


FISCO BCOS EN Documentation, Release v2.2.0

// Request
curl -X POST --data '{"jsonrpc":"2.0","method":"getClientVersion","params":[],"id
→˓":1}' http://127.0.0.1:8545 |jq

// Result
{

"id": 83,
"jsonrpc": "2.0",
"result": {
"Build Time": "20190106 20:49:10",
"Build Type": "Linux/g++/RelWithDebInfo",
"Chain Id": "1",
"FISCO-BCOS Version": "2.0.0",
"Git Branch": "master",
"Git Commit Hash": "693a709ddab39965d9c39da0104836cfb4a72054",
"Supported Version": "2.0.0-rc3"

}
}

10.2 getBlockNumber

Returns the number of most recent block in the specific group.

10.2.1 Parameters

• groupID: unsigned int - group ID

10.2.2 Returns

• string - the highest block number (a hexadecimal string start with 0x)

• Example

// Request
curl -X POST --data '{"jsonrpc":"2.0","method":"getBlockNumber","params":[1],"id
→˓":1}' http://127.0.0.1:8545 |jq

// Result
{

"id": 1,
"jsonrpc": "2.0",
"result": "0x1"

}

10.3 getPbftView

Returns the latest PBFT View in the specific group.

10.3.1 Parameters

• groupID: unsigned int - group ID

248 Chapter 10. JSON-RPC API

design/consensus/pbft.html#view


FISCO BCOS EN Documentation, Release v2.2.0

10.3.2 Returns

• string - PBFT view (a hexadecimal string start with 0x)

• Example

// Request
curl -X POST --data '{"jsonrpc":"2.0","method":"getPbftView","params":[1],"id":1}'
→˓http://127.0.0.1:8545 |jq

// Result
{

"id": 1,
"jsonrpc": "2.0",
"result": "0x1a0"

}

Note: FISCO BCOS supports PBFT Consensus and Raft Consensus. When the blockchain adopts Raft consensus,
the error is:

{
"error": {
"code": 7,
"data": null,
"message": "Only pbft consensus supports the view property"

},
"id": 1,
"jsonrpc": "2.0"

}

10.4 getSealerList

Returns the consensus node list in the specific group.

10.4.1 Parameters

• groupID: unsigned int - group ID

10.4.2 Returns

• array - consensus node ID list

• Example

// Request
curl -X POST --data '{"jsonrpc":"2.0","method":"getSealerList","params":[1],"id":1}
→˓' http://127.0.0.1:8545 |jq

// Result
{

"id": 1,
"jsonrpc": "2.0",
"result": [

→˓"037c255c06161711b6234b8c0960a6979ef039374ccc8b723afea2107cba3432dbbc837a714b7da20111f74d5a24e91925c773a72158fa066f586055379a1772
→˓",

→˓"0c0bbd25152d40969d3d3cee3431fa28287e07cff2330df3258782d3008b876d146ddab97eab42796495bfbb281591febc2a0069dcc7dfe88c8831801c5b5801
→˓", (continues on next page)

10.4. getSealerList 249



FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

→˓"622af37b2bd29c60ae8f15d467b67c0a7fe5eb3e5c63fdc27a0ee8066707a25afa3aa0eb5a3b802d3a8e5e26de9d5af33806664554241a3de9385d3b448bcd73
→˓"

]
}

10.5 getObserverList

Returns the observer node list in the specific group.

10.5.1 Parameters

• groupID: unsigned int - group ID

10.5.2 Returns

• array - observer node ID list

• Example

// Request
curl -X POST --data '{"jsonrpc":"2.0","method":"getObserverList","params":[1],"id
→˓":1}' http://127.0.0.1:8545 |jq

// Result
{

"id": 1,
"jsonrpc": "2.0",
"result": [

→˓"10b3a2d4b775ec7f3c2c9e8dc97fa52beb8caab9c34d026db9b95a72ac1d1c1ad551c67c2b7fdc34177857eada75836e69016d1f356c676a6e8b15c45fc9bc34
→˓"

]
}

10.6 getConsensusStatus

Returns the consensus status data in the specific group.

10.6.1 Parameters

• groupID: unsigned int - group ID

10.6.2 Returns

• object - An object with consensus status data.

• When PBFT consensus mechanism is used,（PBFT design is introduced in PBFT Design Documentation),
the fields as follows:

– accountType: unsigned int - account type

– allowFutureBlocks: bool - allow future blocks

250 Chapter 10. JSON-RPC API



FISCO BCOS EN Documentation, Release v2.2.0

– cfgErr: bool - configure errors

– connectedNodes: unsigned int - connected nodes

– consensusedBlockNumber: unsigned int - the latest consensus block number

– currentView: unsigned int - the current view

– groupId: unsigned int - group ID

– highestblockHash: string - the hash of the highest block

– highestblockNumber: unsigned int - the highest block number

– leaderFailed: bool - leader failed

– max_faulty_leader: unsigned int - the max number of faulty nodes

– sealer.index: string - node ID with sequence number “index”

– node index: unsigned int - sequence number of node

– nodeId: string - node ID

– nodeNum: unsigned int - number of nodes

– omitEmptyBlock: bool - omit empty block

– protocolId: unsigned int - protocol ID

– toView: unsigned int - current view value

• When Raft consensus mechanism is adopted (Raft design is introduced in Raft Design Documentation), the
fields as follows:

– accountType: unsigned int - account type

– allowFutureBlocks: bool - allow future blocks

– cfgErr: bool - configure error

– consensusedBlockNumber: unsigned int - the latest consensus block number

– groupId: unsigned int - group ID

– highestblockHash: string - hash of the latest block

– highestblockNumber: unsigned int - the highest block number

– leaderId: string - leader node ID

– leaderIdx: unsigned int - leader node sequence number

– max_faulty_leader: unsigned int - the max number of faulty nodes

– sealer.index: string - node ID with sequence number “index”

– node index: unsigned int - index of node

– nodeId: string - node ID

– nodeNum: unsigned int - number of nodes

– omitEmptyBlock: bool - omit empty block

– protocolId: unsigned int - protocol ID

• Example

// Request PBFT
curl -X POST --data '{"jsonrpc":"2.0","method":"getConsensusStatus","params":[1],
→˓"id":1}' http://127.0.0.1:8545 |jq

// Result

(continues on next page)

10.6. getConsensusStatus 251



FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

{
"id": 1,
"jsonrpc": "2.0",
"result": [

{
"id": 1,
"jsonrpc": "2.0",
"result": [
{

"accountType": 1,
"allowFutureBlocks": true,
"cfgErr": false,
"connectedNodes": 3,
"consensusedBlockNumber": 38207,
"currentView": 54477,
"groupId": 1,
"highestblockHash":

→˓"0x19a16e8833e671aa11431de589c866a6442ca6c8548ba40a44f50889cd785069",
"highestblockNumber": 38206,
"leaderFailed": false,
"max_faulty_leader": 1,
"nodeId":

→˓"f72648fe165da17a889bece08ca0e57862cb979c4e3661d6a77bcc2de85cb766af5d299fec8a4337eedd142dca026abc2def632f6e456f80230902f93e2bea13
→˓",

"nodeNum": 4,
"node_index": 3,
"omitEmptyBlock": true,
"protocolId": 65544,
"sealer.0":

→˓"6a99f357ecf8a001e03b68aba66f68398ee08f3ce0f0147e777ec77995369aac470b8c9f0f85f91ebb58a98475764b7ca1be8e37637dd6cb80b3355749636a3d
→˓",

"sealer.1":
→˓"8a453f1328c80b908b2d02ba25adca6341b16b16846d84f903c4f4912728c6aae1050ce4f24cd9c13e010ce922d3393b846f6f5c42f6af59c65a814de733afe4
→˓",

"sealer.2":
→˓"ed483837e73ee1b56073b178f5ac0896fa328fc0ed418ae3e268d9e9109721421ec48d68f28d6525642868b40dd26555c9148dbb8f4334ca071115925132889c
→˓",

"sealer.3":
→˓"f72648fe165da17a889bece08ca0e57862cb979c4e3661d6a77bcc2de85cb766af5d299fec8a4337eedd142dca026abc2def632f6e456f80230902f93e2bea13
→˓",

"toView": 54477
},
[

{
"nodeId":

→˓"6a99f357ecf8a001e03b68aba66f68398ee08f3ce0f0147e777ec77995369aac470b8c9f0f85f91ebb58a98475764b7ca1be8e37637dd6cb80b3355749636a3d
→˓",

"view": 54474
},
{

"nodeId":
→˓"8a453f1328c80b908b2d02ba25adca6341b16b16846d84f903c4f4912728c6aae1050ce4f24cd9c13e010ce922d3393b846f6f5c42f6af59c65a814de733afe4
→˓",

"view": 54475
},
{

"nodeId":
→˓"ed483837e73ee1b56073b178f5ac0896fa328fc0ed418ae3e268d9e9109721421ec48d68f28d6525642868b40dd26555c9148dbb8f4334ca071115925132889c
→˓",

"view": 54476
},

(continues on next page)

252 Chapter 10. JSON-RPC API



FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

{
"nodeId":

→˓"f72648fe165da17a889bece08ca0e57862cb979c4e3661d6a77bcc2de85cb766af5d299fec8a4337eedd142dca026abc2def632f6e456f80230902f93e2bea13
→˓",

"view": 54477
}

]
]

}
}

// Request Raft
curl -X POST --data '{"jsonrpc":"2.0","method":"getConsensusStatus","params":[1],
→˓"id":1}' http://127.0.0.1:8545 |jq

// Result
{

"id": 1,
"jsonrpc": "2.0",
"result": [
{

"accountType": 1,
"allowFutureBlocks": true,
"cfgErr": false,
"consensusedBlockNumber": 1,
"groupId": 1,
"highestblockHash":

→˓"0x4765a126a9de8d876b87f01119208be507ec28495bef09c1e30a8ab240cf00f2",
"highestblockNumber": 0,
"leaderId":

→˓"d5b3a9782c6aca271c9642aea391415d8b258e3a6d92082e59cc5b813ca123745440792ae0b29f4962df568f8ad58b75fc7cea495684988e26803c9c5198f3f8
→˓",

"leaderIdx": 3,
"max_faulty_leader": 1,
"sealer.0":

→˓"29c34347a190c1ec0c4507c6eed6a5bcd4d7a8f9f54ef26da616e81185c0af11a8cea4eacb74cf6f61820292b24bc5d9e426af24beda06fbd71c217960c0dff0
→˓",

"sealer.1":
→˓"41285429582cbfe6eed501806391d2825894b3696f801e945176c7eb2379a1ecf03b36b027d72f480e89d15bacd43462d87efd09fb0549e0897f850f9eca82ba
→˓",

"sealer.2":
→˓"87774114e4a496c68f2482b30d221fa2f7b5278876da72f3d0a75695b81e2591c1939fc0d3fadb15cc359c997bafc9ea6fc37345346acaf40b6042b5831c97e1
→˓",

"sealer.3":
→˓"d5b3a9782c6aca271c9642aea391415d8b258e3a6d92082e59cc5b813ca123745440792ae0b29f4962df568f8ad58b75fc7cea495684988e26803c9c5198f3f8
→˓",

"node index": 1,
"nodeId":

→˓"41285429582cbfe6eed501806391d2825894b3696f801e945176c7eb2379a1ecf03b36b027d72f480e89d15bacd43462d87efd09fb0549e0897f850f9eca82ba
→˓",

"nodeNum": 4,
"omitEmptyBlock": true,
"protocolId": 267

}
]

}

10.6. getConsensusStatus 253



FISCO BCOS EN Documentation, Release v2.2.0

10.7 getSyncStatus

Returns the sync status data in the specific group.

10.7.1 Parameters

• groupID: unsigned int - group ID

10.7.2 Returns

• object - An object with sync status information:

– blockNumber: unsigned int - the highest block number

– genesisHash: string - hash of genesis block

– isSyncing: bool - syncing

– knownHighestNumber: unsigned int - the highest number of the blockchain known by the
node

– knownLatestHash: string - the latest hash of the blockchain known by the node

– latestHash: string - hash of the latest block

– nodeId: string - node ID

– protocolId: unsigned int - protocol ID

– txPoolSize: string - transaction volume in txPool

– peers: array - connected p2p nodes in the specific group, fields of node information are:

* blockNumber: unsigned int - the latest block number

* genesisHash: string - hash of genesis block

* latestHash: string - hash of the latest block

* nodeId: string - node ID

• Example

// Request
curl -X POST --data '{"jsonrpc":"2.0","method":"getSyncStatus","params":[1],"id":1}
→˓' http://127.0.0.1:8545 |jq

// Result
{

"id": 1,
"jsonrpc": "2.0",
"result": {
"blockNumber": 0,
"genesisHash":

→˓"0x4765a126a9de8d876b87f01119208be507ec28495bef09c1e30a8ab240cf00f2",
"isSyncing": false,
"knownHighestNumber":0,
"knownLatestHash":

→˓"0x4765a126a9de8d876b87f01119208be507ec28495bef09c1e30a8ab240cf00f2",
"latestHash":

→˓"0x4765a126a9de8d876b87f01119208be507ec28495bef09c1e30a8ab240cf00f2",
"nodeId":

→˓"41285429582cbfe6eed501806391d2825894b3696f801e945176c7eb2379a1ecf03b36b027d72f480e89d15bacd43462d87efd09fb0549e0897f850f9eca82ba
→˓",

(continues on next page)

254 Chapter 10. JSON-RPC API



FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

"peers": [
{

"blockNumber": 0,
"genesisHash":

→˓"0x4765a126a9de8d876b87f01119208be507ec28495bef09c1e30a8ab240cf00f2",
"latestHash":

→˓"0x4765a126a9de8d876b87f01119208be507ec28495bef09c1e30a8ab240cf00f2",
"nodeId":

→˓"29c34347a190c1ec0c4507c6eed6a5bcd4d7a8f9f54ef26da616e81185c0af11a8cea4eacb74cf6f61820292b24bc5d9e426af24beda06fbd71c217960c0dff0
→˓"

},
{

"blockNumber": 0,
"genesisHash":

→˓"0x4765a126a9de8d876b87f01119208be507ec28495bef09c1e30a8ab240cf00f2",
"latestHash":

→˓"0x4765a126a9de8d876b87f01119208be507ec28495bef09c1e30a8ab240cf00f2",
"nodeId":

→˓"87774114e4a496c68f2482b30d221fa2f7b5278876da72f3d0a75695b81e2591c1939fc0d3fadb15cc359c997bafc9ea6fc37345346acaf40b6042b5831c97e1
→˓"

},
{

"blockNumber": 0,
"genesisHash":

→˓"0x4765a126a9de8d876b87f01119208be507ec28495bef09c1e30a8ab240cf00f2",
"latestHash":

→˓"0x4765a126a9de8d876b87f01119208be507ec28495bef09c1e30a8ab240cf00f2",
"nodeId":

→˓"d5b3a9782c6aca271c9642aea391415d8b258e3a6d92082e59cc5b813ca123745440792ae0b29f4962df568f8ad58b75fc7cea495684988e26803c9c5198f3f8
→˓"

}
],
"protocolId": 265,
"txPoolSize": "0"

}
}

10.8 getPeers

Returns the connected p2p node data.

10.8.1 Parameters

• groupID: unsigned int - group ID

10.8.2 Returns

• array - The connected p2p node data:

– IPAndPort: string - The IP and port of a node

– nodeId: string - node ID

– Topic: array - The topic data followed by a node

• Example

10.8. getPeers 255



FISCO BCOS EN Documentation, Release v2.2.0

// Request
curl -X POST --data '{"jsonrpc":"2.0","method":"getPeers","params":[1],"id":1}'
→˓http://127.0.0.1:8545 |jq

// Result
{

"id": 1,
"jsonrpc": "2.0",
"result": [

{
"IPAndPort": "127.0.0.1:30308",
"nodeId":

→˓"0701cc9f05716690437b78db5b7c9c97c4f8f6dd05794ba4648b42b9267ae07cfcd589447ac36c491e7604242149601d67c415504a838524939ef2230d36ffb8
→˓",

"Topic": [ ]
},
{

"IPAndPort": "127.0.0.1:58348",
"nodeId":

→˓"353ab5990997956f21b75ff5d2f11ab2c6971391c73585963e96fe2769891c4bc5d8b7c3d0d04f50ad6e04c4445c09e09c38139b1c0a5937a5778998732e34da
→˓",

"Topic": [ ]
},
{

"IPAndPort": "127.0.0.1:30300",
"nodeId":

→˓"73aebaea2baa9640df416d0e879d6e0a6859a221dad7c2d34d345d5dc1fe9c4cda0ab79a7a3f921dfc9bdea4a49bb37bdb0910c338dadab2d8b8e001186d33bd
→˓",

"Topic": [ ]
}

]
}

10.9 getGroupPeers

Returns the consensus node and observer node list in specific group.

10.9.1 Parameters

• groupID: unsigned int - group ID

10.9.2 Returns

• array - The consensus node and observer node ID list

• Example

// Request
curl -X POST --data '{"jsonrpc":"2.0","method":"getGroupPeers","params":[1],"id":1}
→˓' http://127.0.0.1:8545 |jq

// Result
{

"id": 1,
"jsonrpc": "2.0",
"result": [

→˓"0c0bbd25152d40969d3d3cee3431fa28287e07cff2330df3258782d3008b876d146ddab97eab42796495bfbb281591febc2a0069dcc7dfe88c8831801c5b5801
→˓",

(continues on next page)

256 Chapter 10. JSON-RPC API



FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

→˓"037c255c06161711b6234b8c0960a6979ef039374ccc8b723afea2107cba3432dbbc837a714b7da20111f74d5a24e91925c773a72158fa066f586055379a1772
→˓",

→˓"622af37b2bd29c60ae8f15d467b67c0a7fe5eb3e5c63fdc27a0ee8066707a25afa3aa0eb5a3b802d3a8e5e26de9d5af33806664554241a3de9385d3b448bcd73
→˓",

→˓"10b3a2d4b775ec7f3c2c9e8dc97fa52beb8caab9c34d026db9b95a72ac1d1c1ad551c67c2b7fdc34177857eada75836e69016d1f356c676a6e8b15c45fc9bc34
→˓"

]
}

10.10 getNodeIDList

Returns the node and connected p2p node list.

10.10.1 Parameters

• groupID: unsigned int - group ID

10.10.2 Returns

• array - The node and connected p2p node ID list

• Example

// Request
curl -X POST --data '{"jsonrpc":"2.0","method":"getNodeIDList","params":[1],"id":1}
→˓' http://127.0.0.1:8545 |jq

// Result
{

"id": 1,
"jsonrpc": "2.0",
"result": [

→˓"0c0bbd25152d40969d3d3cee3431fa28287e07cff2330df3258782d3008b876d146ddab97eab42796495bfbb281591febc2a0069dcc7dfe88c8831801c5b5801
→˓",

→˓"037c255c06161711b6234b8c0960a6979ef039374ccc8b723afea2107cba3432dbbc837a714b7da20111f74d5a24e91925c773a72158fa066f586055379a1772
→˓",

→˓"622af37b2bd29c60ae8f15d467b67c0a7fe5eb3e5c63fdc27a0ee8066707a25afa3aa0eb5a3b802d3a8e5e26de9d5af33806664554241a3de9385d3b448bcd73
→˓",

→˓"10b3a2d4b775ec7f3c2c9e8dc97fa52beb8caab9c34d026db9b95a72ac1d1c1ad551c67c2b7fdc34177857eada75836e69016d1f356c676a6e8b15c45fc9bc34
→˓"

]
}

10.11 getGroupList

Returns the group ID list where the node belongs.

10.10. getNodeIDList 257



FISCO BCOS EN Documentation, Release v2.2.0

10.11.1 Parameters

none

10.11.2 Returns

• array - group ID list

• Example

// Request
curl -X POST --data '{"jsonrpc":"2.0","method":"getGroupList","params":[],"id":1}'
→˓http://127.0.0.1:8545 |jq

// Result
{

"id": 1,
"jsonrpc": "2.0",
"result": [1]

}

10.12 getBlockByHash

Returns information about a block by hash.

10.12.1 Parameters

• groupID: unsigned int - group ID

• blockHash: string - hash of a block

• includeTransactions: bool - If true it returns the full transaction objects, if false only the
hashes of the transactions.

10.12.2 Returns

• object - A block object:

– extraData: array - extra data

– gasLimit: string - the maximum gas allowed in block

– gasUsed: string - gas used by all transactions

– hash: string - block hash

– logsBloom: string - bloom filter value of log

– number: string - block height

– parentHash: string - hash of parent block

– sealer: string - consensus node sequence number

– sealerList: array - consensus nodes list

– stateRoot: string - hash of state root

– timestamp: string - time stamp

258 Chapter 10. JSON-RPC API



FISCO BCOS EN Documentation, Release v2.2.0

– transactions: array - transaction list, when includeTransactions is false, it shows
the hash of transaction; when includeTransactions is true, it shows transaction details (detail
fields please check getTransactionByHash)

• Example

// Request
curl -X POST --data '{"jsonrpc":"2.0","method":"getBlockByHash","params":[1,
→˓"0x910ea44e2a83618c7cc98456678c9984d94977625e224939b24b3c904794b5ec",true],"id
→˓":1}' http://127.0.0.1:8545 |jq

// Result
{

"id": 1,
"jsonrpc": "2.0",
"result": {
"extraData": [],
"gasLimit": "0x0",
"gasUsed": "0x0",
"hash": "0x910ea44e2a83618c7cc98456678c9984d94977625e224939b24b3c904794b5ec",
"logsBloom":

→˓"0x00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
→˓",

"number": "0x1",
"parentHash":

→˓"0x4765a126a9de8d876b87f01119208be507ec28495bef09c1e30a8ab240cf00f2",
"sealer": "0x3",
"sealerList":[

→˓"0471101bcf033cd9e0cbd6eef76c144e6eff90a7a0b1847b5976f8ba32b2516c0528338060a4599fc5e3bafee188bca8ccc529fbd92a760ef57ec9a14e9e4278
→˓",

→˓"2b08375e6f876241b2a1d495cd560bd8e43265f57dc9ed07254616ea88e371dfa6d40d9a702eadfd5e025180f9d966a67f861da214dd36237b58d72aaec2e108
→˓",

→˓"cf93054cf524f51c9fe4e9a76a50218aaa7a2ca6e58f6f5634f9c2884d2e972486c7fe1d244d4b49c6148c1cb524bcc1c99ee838bb9dd77eb42f557687310ebd
→˓",

→˓"ed1c85b815164b31e895d3f4fc0b6e3f0a0622561ec58a10cc8f3757a73621292d88072bf853ac52f0a9a9bbb10a54bdeef03c3a8a42885fe2467b9d13da9dec
→˓"

],
"stateRoot":

→˓"0xfb7ca5a7a271c8ffb51bc689b78d0aeded23497c9c22e67dff8b1c7b4ec88a2a",
"timestamp": "0x1687e801d99",
"transactions": [

{
"blockHash":

→˓"0x910ea44e2a83618c7cc98456678c9984d94977625e224939b24b3c904794b5ec",
"blockNumber": "0x1",
"from": "0xadf06b974703a1c25c621ce53676826198d4b046",
"gas": "0x1c9c380",
"gasPrice": "0x1",
"hash": "0x022dcb1ad2d940ce7b2131750f7458eb8ace879d129ee5b650b84467cb2184d7

→˓",
"input":

→˓"0x608060405234801561001057600080fd5b5060016000800160006101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055506402540be40060006001018190555060028060000160006101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff16021790555060006002600101819055506103bf806100c26000396000f30060806040526004361061004c576000357c0100000000000000000000000000000000000000000000000000000000900463ffffffff16806366c99139146100515780636d4ce63c1461007e575b600080fd5b34801561005d57600080fd5b5061007c600480360381019080803590602001909291905050506100a9565b005b34801561008a57600080fd5b506100936102e1565b6040518082815260200191505060405180910390f35b8060006001015410806100c757506002600101548160026001015401105b156100d1576102de565b8060006001015403600060010181905550806002600101600082825401925050819055507fc77b710b83d1dc3f3fafeccd08a6c469beb873b2f0975b50d1698e46b3ee5b4c816040518082815260200191505060405180910390a160046080604051908101604052806040805190810160405280600881526020017f323031373034313300000000000000000000000000000000000000000000000081525081526020016000800160009054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff168152602001600260000160009054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff168152602001838152509080600181540180825580915050906001820390600052602060002090600402016000909192909190915060008201518160000190805190602001906102419291906102ee565b5060208201518160010160006101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff16021790555060408201518160020160006101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff160217905550606082015181600301555050505b50565b6000600260010154905090565b828054600181600116156101000203166002900490600052602060002090601f016020900481019282601f1061032f57805160ff191683800117855561035d565b8280016001018555821561035d579182015b8281111561035c578251825591602001919060010190610341565b5b50905061036a919061036e565b5090565b61039091905b8082111561038c576000816000905550600101610374565b5090565b905600a165627a7a72305820fb983c66bee66788f407721b23b10a8aae3dc9ef8f1b09e08ec6a6c0b0ec70100029
→˓",

"nonce": "0x1a9d06264238ea69c1bca2a74cfced979d6b6a66ce8ad6f5a30e8017b5a98d8
→˓",

"to": null,
"transactionIndex": "0x0",
"value": "0x0"

}
(continues on next page)

10.12. getBlockByHash 259

./api.html#gettransactionbyhash


FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

],
"transactionsRoot":

→˓"0x07506c27626365c4f0db788619a96df1e6f8f62c583f158192700e08c10fec6a"
}

}

// Request
curl -X POST --data '{"jsonrpc":"2.0","method":"getBlockByHash","params":[1,
→˓"0x910ea44e2a83618c7cc98456678c9984d94977625e224939b24b3c904794b5ec",false],"id
→˓":1}' http://127.0.0.1:8545 |jq

// Result
{

"id": 1,
"jsonrpc": "2.0",
"result": {
"extraData": [],
"gasLimit": "0x0",
"gasUsed": "0x0",
"hash": "0x910ea44e2a83618c7cc98456678c9984d94977625e224939b24b3c904794b5ec",
"logsBloom":

→˓"0x00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
→˓",

"number": "0x1",
"parentHash":

→˓"0x4765a126a9de8d876b87f01119208be507ec28495bef09c1e30a8ab240cf00f2",
"sealer": "0x3",
"sealerList":[

→˓"0471101bcf033cd9e0cbd6eef76c144e6eff90a7a0b1847b5976f8ba32b2516c0528338060a4599fc5e3bafee188bca8ccc529fbd92a760ef57ec9a14e9e4278
→˓",

→˓"2b08375e6f876241b2a1d495cd560bd8e43265f57dc9ed07254616ea88e371dfa6d40d9a702eadfd5e025180f9d966a67f861da214dd36237b58d72aaec2e108
→˓",

→˓"cf93054cf524f51c9fe4e9a76a50218aaa7a2ca6e58f6f5634f9c2884d2e972486c7fe1d244d4b49c6148c1cb524bcc1c99ee838bb9dd77eb42f557687310ebd
→˓",

→˓"ed1c85b815164b31e895d3f4fc0b6e3f0a0622561ec58a10cc8f3757a73621292d88072bf853ac52f0a9a9bbb10a54bdeef03c3a8a42885fe2467b9d13da9dec
→˓"

],
"stateRoot":

→˓"0xfb7ca5a7a271c8ffb51bc689b78d0aeded23497c9c22e67dff8b1c7b4ec88a2a",
"timestamp": "0x1687e801d99",
"transactions": [

"0x022dcb1ad2d940ce7b2131750f7458eb8ace879d129ee5b650b84467cb2184d7"
],
"transactionsRoot":

→˓"0x07506c27626365c4f0db788619a96df1e6f8f62c583f158192700e08c10fec6a"
}

}

10.13 getBlockByNumber

Returns information about a block by block number.

260 Chapter 10. JSON-RPC API



FISCO BCOS EN Documentation, Release v2.2.0

10.13.1 Parameters

• groupID: unsigned int - group ID

• blockNumber: string - block number (hexadecimal string starts with 0x)

• includeTransactions: bool - If true it returns the full transaction objects, if false only the
hashes of the transactions.

10.13.2 Returns

please check getBlockByHash

• Example

// Request
curl -X POST --data '{"jsonrpc":"2.0","method":"getBlockByNumber","params":[1,"0x0
→˓",true],"id":1}' http://127.0.0.1:8545 |jq

See the result in getBlockByHash

10.14 getBlockHashByNumber

Returns a block hash by a block number.

10.14.1 Parameters

• groupID: unsigned int - group ID

• blockNumber: string - block number (hexadecimal string starts with 0x)

10.14.2 Returns

• blockHash: string - hash of block

• Example

// Request
curl -X POST --data '{"jsonrpc":"2.0","method":"getBlockHashByNumber","params":[1,
→˓"0x1"],"id":1}' http://127.0.0.1:8545 |jq

// Result
{

"id": 1,
"jsonrpc": "2.0",
"result": "0x10bfdc1e97901ed22cc18a126d3ebb8125717c2438f61d84602f997959c631fa"

}

10.15 getTransactionByHash

Returns the information about a transaction by transaction hash.

10.14. getBlockHashByNumber 261

./api.html#getblockbyhash
./api.html#getblockbyhash


FISCO BCOS EN Documentation, Release v2.2.0

10.15.1 Parameters

• groupID: unsigned int - group ID

• transactionHash: string - transaction hash

10.15.2 Returns

• object: - A transaction object:

– blockHash: string - hash of the block where this transaction was in.

– blockNumber: string - block number where this transaction was in.

– from: string - address of the sender

– gas: string - gas provided by the sender

– gasPrice: string - gas price provided by the sender

– hash: string - hash of the transaction

– input: string - the data send along with the transaction

– nonce: string - the number of transactions made by the sender prior to this one

– to: string - address of the receiver, 0x0000000000000000000000000000000000000000
when its a contract creation transaction‘

– transactionIndex: string - integer of the transaction’s index position in the block

– value: string - value transferred

• Example

// Request
curl -X POST --data '{"jsonrpc":"2.0","method":"getTransactionByHash","params":[1,
→˓"0x7536cf1286b5ce6c110cd4fea5c891467884240c9af366d678eb4191e1c31c6f"],"id":1}'
→˓http://127.0.0.1:8545 |jq

// Result
{

"id": 1,
"jsonrpc": "2.0",
"result": {

"blockHash":
→˓"0x10bfdc1e97901ed22cc18a126d3ebb8125717c2438f61d84602f997959c631fa",

"blockNumber": "0x1",
"from": "0x6bc952a2e4db9c0c86a368d83e9df0c6ab481102",
"gas": "0x9184e729fff",
"gasPrice": "0x174876e7ff",
"hash": "0x7536cf1286b5ce6c110cd4fea5c891467884240c9af366d678eb4191e1c31c6f

→˓",
"input":

→˓"0x48f85bce000000000000000000000000000000000000000000000000000000000000001bf5bd8a9e7ba8b936ea704292ff4aaa5797bf671fdc8526dcd159f23c1f5a05f44e9fa862834dc7cb4541558f2b4961dc39eaaf0af7f7395028658d0e01b86a37
→˓",

"nonce": "0x65f0d06e39dc3c08e32ac10a5070858962bc6c0f5760baca823f2d5582d03f
→˓",

"to": "0xd6f1a71052366dbae2f7ab2d5d5845e77965cf0d",
"transactionIndex": "0x0",
"value": "0x0"

}
}

262 Chapter 10. JSON-RPC API



FISCO BCOS EN Documentation, Release v2.2.0

10.16 getTransactionByBlockHashAndIndex

Returns information about a transaction by block hash and transaction index position.

10.16.1 Parameters

• groupID: unsigned int - group ID

• blockHash: string - hash of a block

• transactionIndex: string - integer of the transaction index position

10.16.2 Returns

please see getTransactionByHash

• Example

// Request
curl -X POST --data '{"jsonrpc":"2.0","method":"getTransactionByBlockHashAndIndex",
→˓"params":[1,"0x10bfdc1e97901ed22cc18a126d3ebb8125717c2438f61d84602f997959c631fa",
→˓"0x0"],"id":1}' http://127.0.0.1:8545 |jq

see result in getTransactionByHash

10.17 getTransactionByBlockNumberAndIndex

Returns information about a transaction by block number and transaction index position.

10.17.1 Parameters

• groupID: unsigned int - group ID

• blockNumber: string - a block number (hexadecimal string starts with 0x)

• transactionIndex: string - the transaction index position (hexadecimal string starts with 0x)

10.17.2 Returns

please see getTransactionByHash

• Example

// Request
curl -X POST --data '{"jsonrpc":"2.0","method":"getTransactionByBlockNumberAndIndex
→˓","params":[1,"0x1","0x0"],"id":1}' http://127.0.0.1:8545 |jq

see result in getTransactionByHash

10.18 getTransactionReceipt

Returns the receipt of a transaction by transaction hash.

10.16. getTransactionByBlockHashAndIndex 263

./api.html#gettransactionbyhash
./api.html#gettransactionbyhash
./api.html#gettransactionbyhash
./api.html#gettransactionbyhash


FISCO BCOS EN Documentation, Release v2.2.0

10.18.1 Parameters

• groupID: unsigned int - group ID

• transactionHash: string - hash of a transaction

10.18.2 Returns

• object: - transaction information:

– blockHash: string - hash of the block where this transaction was in

– blockNumber: string - block number where this transaction was in

– contractAddress: string - contract address, the contract address created, if the transaction
was a contract creation, otherwise “0x0000000000000000000000000000000000000000”

– from: string - address of the sender

– gasUsed: string - The amount of gas used by this specific transaction

– input: string - the data send along with the transaction

– logs: array - Array of log objects, which this transaction generated

– logsBloom: string - Bloom filter for light clients to quickly retrieve related logs

– output: string - the data result along with the transaction

– root: string - state root

– status: string - status value of the transaction

– to: string - address of the receiver. 0x0000000000000000000000000000000000000000
when its a contract creation.

– transactionHash: string - hash of the transaction

• transactionIndex: string - integer of the transaction’s index position in the block

• Example

// Request
curl -X POST --data '{"jsonrpc":"2.0","method":"getTransactionReceipt","params":[1,
→˓"0x708b5781b62166bd86e543217be6cd954fd815fd192b9a124ee9327580df8f3f"],"id":1}'
→˓http://127.0.0.1:8545 |jq

// Result
{

"id": 1,
"jsonrpc": "2.0",
"result": {

"blockHash":
→˓"0x977efec48c248ea4be87016446b40d7785d7b71b7d4e3aa0b103b9cf0f5fe19e",

"blockNumber": "0xa",
"contractAddress": "0x0000000000000000000000000000000000000000",
"from": "0xcdcce60801c0a2e6bb534322c32ae528b9dec8d2",
"gasUsed": "0x1fb8d",
"input":

→˓"0xb602109a000000000000000000000000000000000000000000000000000000000000008000000000000000000000000000000000000000000000000000000000000000c00000000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000014000000000000000000000000000000000000000000000000000000000000000203078313030303030303030303030303030303030303030303030303030303030000000000000000000000000000000000000000000000000000000000000000832303139303733300000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002616100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000026262000000000000000000000000000000000000000000000000000000000000
→˓",

"logs": [ ],
"logsBloom":

→˓"0x00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
→˓",

"output":
→˓"0x0000000000000000000000000000000000000000000000000000000000000000",

(continues on next page)

264 Chapter 10. JSON-RPC API



FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

"root":"0x38723a2e5e8a17aa7950dc008209944e898f69a7bd10a23c839d341e935fd5ca
→˓",

"status": "0x0",
"to": "0x15538acd403ac1b2ff09083c70d04856b8c0bdfd",
"transactionHash":

→˓"0x708b5781b62166bd86e543217be6cd954fd815fd192b9a124ee9327580df8f3f",
"transactionIndex": "0x0"

}
}

10.19 getPendingTransactions

Returns the pending transactions list.

10.19.1 Parameters

• groupID: unsigned int - group ID

10.19.2 Returns

• object: - pending transaction information:

– from: string - address of the sender

– gas: string - gas provided by the sender

– gasPrice: string - gas price provided by the sender

– hash: string - hash of the transaction

– input: string - the data send along with the transaction

– nonce: string - the number of transactions made by the sender prior to this one

– to: string - address of the receiver, 0x0000000000000000000000000000000000000000
when its a contract creation transaction‘

– value: string - value transferred

• Example

// Request
curl -X POST --data '{"jsonrpc":"2.0","method":"getPendingTransactions","params
→˓":[1],"id":1}' http://127.0.0.1:8545 |jq

// Result
{

"id": 1,
"jsonrpc": "2.0",
"result": {

[
{

"from": "0x6bc952a2e4db9c0c86a368d83e9df0c6ab481102",
"gas": "0x9184e729fff",
"gasPrice": "0x174876e7ff",
"hash":

→˓"0x7536cf1286b5ce6c110cd4fea5c891467884240c9af366d678eb4191e1c31c6f",
"input":

→˓"0x48f85bce000000000000000000000000000000000000000000000000000000000000001bf5bd8a9e7ba8b936ea704292ff4aaa5797bf671fdc8526dcd159f23c1f5a05f44e9fa862834dc7cb4541558f2b4961dc39eaaf0af7f7395028658d0e01b86a37
→˓",

(continues on next page)

10.19. getPendingTransactions 265



FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

"nonce":
→˓"0x65f0d06e39dc3c08e32ac10a5070858962bc6c0f5760baca823f2d5582d03f",

"to": "0xd6f1a71052366dbae2f7ab2d5d5845e77965cf0d",
"value": "0x0"

}
]

}
}

10.20 getPendingTxSize

Returns the size of pending transactions

10.20.1 Parameters

• groupID: unsigned int - group ID

10.20.2 Returns

• string: - size of pending transactions

• Example

// Request
curl -X POST --data '{"jsonrpc":"2.0","method":"getPendingTxSize","params":[1],"id
→˓":1}' http://127.0.0.1:8545 |jq

// Result
{

"id": 1,
"jsonrpc": "2.0",
"result": "0x1"

}

10.21 getCode

Returns code by a contract address.

10.21.1 Parameters

• groupID: unsigned int - group ID

• address: string - contract address

10.21.2 Returns

• string: - contract data

• Example

266 Chapter 10. JSON-RPC API



FISCO BCOS EN Documentation, Release v2.2.0

// Request
curl -X POST --data '{"jsonrpc":"2.0","method":"getCode","params":[1,
→˓"0xa94f5374fce5edbc8e2a8697c15331677e6ebf0b"],"id":1}' http://127.0.0.1:8545 |jq

// Result
{

"id": 1,
"jsonrpc": "2.0",
"result":

→˓"0x60606040523415600b57fe5b5b60928061001a6000396000f30060606040526000357c0100000000000000000000000000000000000000000000000000000000900463ffffffff1680636d4ce63c14603a575bfe5b3415604157fe5b6047605d565b6040518082815260200191505060405180910390f35b60004290505b905600a165627a7a723058203d9c292921247163d180a161baa8db840c9da6764cab1d23f1e11a5cff13c7910029
→˓"
}

10.22 getTotalTransactionCount

Returns current total size of transaction and block number.

10.22.1 Parameters

• groupID: unsigned int - group ID

10.22.2 Returns

• object: - current total size of transaction and block number:

– blockNumber: string - block number

– failedTxSum: string - the failed total of transaction

– txSum: string - the total of transaction

• Example

// Request
curl -X POST --data '{"jsonrpc":"2.0","method":"getTotalTransactionCount","params
→˓":[1],"id":1}' http://127.0.0.1:8545 |jq

// Result
{

"id": 1,
"jsonrpc": "2.0",
"result": {

"blockNumber": "0x1",
"failedTxSum": "0x0",
"txSum": "0x1"

}
}

10.23 getSystemConfigByKey

Returns value by a key value

10.23.1 Parameters

• groupID: unsigned int - group ID

10.22. getTotalTransactionCount 267



FISCO BCOS EN Documentation, Release v2.2.0

• key: string - support tx_count_limit and tx_gas_limit

10.23.2 Returns

• string - value

• Example

// Request
curl -X POST --data '{"jsonrpc":"2.0","method":"getSystemConfigByKey","params":[1,
→˓"tx_count_limit"],"id":1}' http://127.0.0.1:8545 |jq

// Result
{

"id": 1,
"jsonrpc": "2.0",
"result": "1000"

}

10.24 call

Executes a new message call immediately without creating a transaction on the block chain.

10.24.1 Parameters

• groupID: unsigned int - group ID

• object: - the transaction call object:

– from: string - address of the sender

– to: string - address of the receiver

– value: string - (optional) transfer value

– data: string - (optional) code parameter. You can read the coding convention in Ethereum Con-
tract ABI

10.24.2 Returns

• object: - result object

– currentBlockNumber: string - the current block number

– output: string - result

– status: string - status value of the message(the same as transaction status)

• Example

// Request
curl -X POST --data '{"jsonrpc":"2.0","method":"call","params":[1,{"from":
→˓"0x6bc952a2e4db9c0c86a368d83e9df0c6ab481102","to":
→˓"0xd6f1a71052366dbae2f7ab2d5d5845e77965cf0d","value":"0x1","data":"0x3"}],"id":1}
→˓' http://127.0.0.1:8545 |jq

// Result
{

"id": 1,
"jsonrpc": "2.0",

(continues on next page)

268 Chapter 10. JSON-RPC API

https://solidity.readthedocs.io/en/develop/abi-spec.html
https://solidity.readthedocs.io/en/develop/abi-spec.html


FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

"result": {
"currentBlockNumber": "0x1",
"output": "0x",
"status": "0x0"

}
}

10.25 sendRawTransaction

Creates new message call transaction or a contract creation for signed transactions.

10.25.1 Parameters

• groupID: unsigned int - group ID

• rlp: string - transaction data of signing

10.25.2 Returns

• string - the signed transaction data

• Example

// RC1 Request
curl -X POST --data '{"jsonrpc":"2.0","method":"sendRawTransaction","params":[1,
→˓"f8ef9f65f0d06e39dc3c08e32ac10a5070858962bc6c0f5760baca823f2d5582d03f85174876e7ff8609184e729fff82020394d6f1a71052366dbae2f7ab2d5d5845e77965cf0d80b86448f85bce000000000000000000000000000000000000000000000000000000000000001bf5bd8a9e7ba8b936ea704292ff4aaa5797bf671fdc8526dcd159f23c1f5a05f44e9fa862834dc7cb4541558f2b4961dc39eaaf0af7f7395028658d0e01b86a371ca00b2b3fabd8598fefdda4efdb54f626367fc68e1735a8047f0f1c4f840255ca1ea0512500bc29f4cfe18ee1c88683006d73e56c934100b8abf4d2334560e1d2f75e
→˓"],"id":1}' http://127.0.0.1:8545 |jq

// RC1 Result
{

"id": 1,
"jsonrpc": "2.0",
"result": "0x7536cf1286b5ce6c110cd4fea5c891467884240c9af366d678eb4191e1c31c6f"

}

// RC2 Request
curl -X POST --data '{"jsonrpc":"2.0","method":"sendRawTransaction","params":[1,
→˓"f8d3a003922ee720bb7445e3a914d8ab8f507d1a647296d563100e49548d83fd98865c8411e1a3008411e1a3008201f894d6c8a04b8826b0a37c6d4aa0eaa8644d8e35b79f80a466c9913900000000000000000000000000000000000000000000000000000000000000040101a466c9913900000000000000000000000000000000000000000000000000000000000000041ba08e0d3fae10412c584c977721aeda88df932b2a019f084feda1e0a42d199ea979a016c387f79eb85078be5db40abe1670b8b480a12c7eab719bedee212b7972f775
→˓"],"id":1}' http://127.0.0.1:8545 |jq

// RC2 Result
{

"id": 1,
"jsonrpc": "2.0",
"result": "0x0accad4228274b0d78939f48149767883a6e99c95941baa950156e926f1c96ba"

}

// FISCO BCOS supports OSCCA algorithm, request of OSCCA is exemplified here
// RC1 Request
curl -X POST --data '{"jsonrpc":"2.0","method":"sendRawTransaction","params":[1,
→˓"f8ef9f65f0d06e39dc3c08e32ac10a5070858962bc6c0f5760baca823f2d5582d03f85174876e7ff8609184e729fff82020394d6f1a71052366dbae2f7ab2d5d5845e77965cf0d80b86448f85bce000000000000000000000000000000000000000000000000000000000000001bf5bd8a9e7ba8b936ea704292ff4aaa5797bf671fdc8526dcd159f23c1f5a05f44e9fa862834dc7cb4541558f2b4961dc39eaaf0af7f7395028658d0e01b86a371ca00b2b3fabd8598fefdda4efdb54f626367fc68e1735a8047f0f1c4f840255ca1ea0512500bc29f4cfe18ee1c88683006d73e56c934100b8abf4d2334560e1d2f75e
→˓"],"id":1}' http://127.0.0.1:8545 |jq
// RC2 Request
curl -X POST --data '{"jsonrpc":"2.0","method":"sendRawTransaction","params":[1,
→˓"f90114a003eebc46c9c0e3b84799097c5a6ccd6657a9295c11270407707366d0750fcd598411e1a30084b2d05e008201f594bab78cea98af2320ad4ee81bba8a7473e0c8c48d80a48fff0fc400000000000000000000000000000000000000000000000000000000000000040101a48fff0fc40000000000000000000000000000000000000000000000000000000000000004b8408234c544a9f3ce3b401a92cc7175602ce2a1e29b1ec135381c7d2a9e8f78f3edc9c06ee55252857c9a4560cb39e9d70d40f4331cace4d2b3121b967fa7a829f0a00f16d87c5065ad5c3b110ef0b97fe9a67b62443cb8ddde60d4e001a64429dc6ea03d2569e0449e9a900c236541afb9d8a8d5e1a36844439c7076f6e75ed624256f
→˓"],"id":1}' http://127.0.0.1:8545 |jq

10.25. sendRawTransaction 269



FISCO BCOS EN Documentation, Release v2.2.0

10.26 getTransactionByHashWithProof

Returns the information about the transaction and its proof by a transaction hash. Please note that this function is
supported since 2.2.0.

10.26.1 Parameters

• groupID: unsigned int - group ID

• transactionHash: string - transaction hash

10.26.2 Returns

• object: - A transaction object：

– blockHash: string - hash of the block where this transaction was in

– blockNumber: string - block number where this transaction was in

– from: string - address of the sender

– gas: string - gas provided by the sender

– gasPrice: string - gas price provided by the sender

– hash: string - hash of the transaction

– input: string - the data send along with the transaction

– nonce: string - the number of transactions made by the sender prior to this one

– to: string - address of the receiver, 0x0000000000000000000000000000000000000000
when its a contract creation transaction‘

– transactionIndex: string - integer of the transaction’s index position in the block

– value: string - value transferred

• array - proof of transaction:

– left: array - the hash list of left

– right: array - the hash list of right

• Examples

curl -X POST --data '{"jsonrpc":"2.0","method":"getTransactionByHashWithProof",
→˓"params":[1,"0xd2c12e211315ef09dbad53407bc820d062780232841534954f9c23ab11d8ab4c
→˓"],"id":1}' http://127.0.0.1:8585 |jq
{

"id": 1,
"jsonrpc": "2.0",
"result": {
"transaction": {

"blockHash":
→˓"0xcd31b05e466bce99460b1ed70d6069fdfbb15e6eef84e9b9e4534358edb3899a",

"blockNumber": "0x5",
"from": "0x148947262ec5e21739fe3a931c29e8b84ee34a0f",
"gas": "0x1c9c380",
"gasPrice": "0x1c9c380",
"hash": "0xd2c12e211315ef09dbad53407bc820d062780232841534954f9c23ab11d8ab4c",
"input":

→˓"0x8a42ebe90000000000000000000000000000000000000000000000000000000000000040000000000000000000000000000000000000000000000000000000003b9aca00000000000000000000000000000000000000000000000000000000000000000a3564646636663863653800000000000000000000000000000000000000000000
→˓",

"nonce": "0x208f6fd78d48aad370df51c6fdf866f8ab022de765c2959841ff2e81bfd9af9",

(continues on next page)

270 Chapter 10. JSON-RPC API



FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

"to": "0xd6c8a04b8826b0a37c6d4aa0eaa8644d8e35b79f",
"transactionIndex": "0x32",
"value": "0x0"

},
"txProof": [

{
"left": [
"30f0abfcf4ca152815548620e33d21fd0feaa7c78867791c751e57cb5aa38248c2",
"31a864156ca9841da8176738bb981d5da9102d9703746039b3e5407fa987e5183e"

],
"right": [
"33d8078d7e71df3544f8845a9db35aa35b2638e8468a321423152e64b9004367b4",
"34343a4bce325ec8f6cf48517588830cd15f69b60a05598b78b03c3656d1fbf2f5",
"35ac231554047ce77c0b31cd1c469f1f39ebe23404fa8ff6cc7819ad83e2c029e7",
"361f6c588e650323e03afe6460dd89a9c061583e0d62c117ba64729d2c9d79317c",
"377606f79f3e08b1ba3759eceada7fde3584f01822467855aa6356652f2499c738",
"386722fe270659232c5572ba54ce23b474c85d8b709e7c08e85230afb1c155fe18",
"39a9441d668e5e09a5619c365577c8c31365f44a984bde04300d4dbba190330c0b",
"3a78a8c288120cbe612c24a33cce2731dd3a8fe6927d9ee25cb2350dba08a541f5",
"3bd9b67256e201b5736f6081f39f83bcb917261144384570bdbb8766586c3bb417",
"3c3158e5a82a1ac1ed41c4fd78d5be06bf79327f60b094895b886e7aae57cff375",
"3de9a4d98c5ae658ffe764fbfa81edfdd4774e01b35ccb42beacb67064a5457863",
"3e525e60c0f7eb935125f1156a692eb455ab4038c6b16390ce30937b0d1b314298",
"3f1600afe67dec2d21582b8c7b76a15e569371d736d7bfc7a96c0327d280b91dfc"

]
},
{

"left": [
"3577673b86ad4d594d86941d731f17d1515f4669483aed091d49f279d677cb19",
"75603bfea5b44df4c41fbb99268364641896334f006af3a3f67edaa4b26477ca",
"1339d43c526f0f34d8a0f4fb3bb47b716fdfde8d35697be5992e0888e4d794c9"

],
"right": [
"63c8e574fb2ef52e995427a8acaa72c27073dd8e37736add8dbf36be4f609ecb",
"e65353d911d6cc8ead3fad53ab24cab69a1e31df8397517b124f578ba908558d"

]
},
{

"left": [],
"right": []

}
]

}
}

10.27 getTransactionReceiptByHashWithProof

Returns the information about the receipt and its proof by a transaction hash. Please note that this function is
supported since 2.2.0.

10.27.1 Parameters

• groupID: unsigned int - group ID

• transactionHash: string - transaction hash

10.27. getTransactionReceiptByHashWithProof 271



FISCO BCOS EN Documentation, Release v2.2.0

10.27.2 Returns

• array - proof of receipt:

– left: array - the hash list of left

– right: array - the hash list of right

• object: - transaction information:

– blockHash: string - hash of the block where this transaction was in

– blockNumber: string - block number where this transaction was in

– contractAddress: string - contract address, the contract address created, if the transaction
was a contract creation, otherwise “0x0000000000000000000000000000000000000000”

– from: string - address of the sender

– gasUsed: string - The amount of gas used by this specific transaction

– input: string - the data send along with the transaction

– logs: array - Array of log objects, which this transaction generated

– logsBloom: string - Bloom filter for light clients to quickly retrieve related logs

– output: string - the data result along with the transaction

– status: string - status value of the transaction

– to: string - address of the receiver. 0x0000000000000000000000000000000000000000
when its a contract creation.

– transactionHash: string - hash of the transaction

– transactionIndex: string - integer of the transaction’s index position in the block

• Examples

curl -X POST --data '{"jsonrpc":"2.0","method":
→˓"getTransactionReceiptByHashWithProof","params":[1,
→˓"0xd2c12e211315ef09dbad53407bc820d062780232841534954f9c23ab11d8ab4c"],"id":1}'
→˓http://127.0.0.1:8585 |jq

{
"id": 1,
"jsonrpc": "2.0",
"result": {
"receiptProof": [

{
"left": [
"3088b5c8f9d92a3411a911f35ff0119a02e8f8f04852cf2fdfaa659843eac6a3ad",
"31170ac8fd555dc50e59050841da0d96e4c4bc7e6266e1c6865c08c3b2391801dd"

],
"right": [
"33c572c8f961e0c56689d641fcf274916857819769a74e6424c58659bf530e90e3",
"341233933ea3d357b4fdd6b3d1ed732dcff15cfd54e527c93c15a4e0238585ed11",
"351e7ba09965cce1cfb820aced1d37204b06d96a21c5c2cf36850ffc62cf1fc84c",
"361f65633d9ae843d4d3679b255fd448546a7b531c0056e8161ea0adbf1af12c0f",
"37744f6e0d320314536b230d28b2fd6ac90b0111fb1e3bf4a750689abc282d8589",
"386e60d9daa0be9825019fcf3d08cdaf51a90dc62a22a6e11371f94a8e516679cc",
"391ef2f2cee81f3561a9900d5333af18f59aa3cd14e70241b5e86305ba697bf5f2",
"3ac9999d4f36d76c95c61761879eb9ec60b964a489527f5af844398ffaa8617f0d",
"3b0039ce903e275170640f3a464ce2e1adc2a7caee41267c195469365074032401",
"3ca53017502028a0cb5bbf6c47c4779f365138da6910ffcfebf9591b45b89abd48",
"3de04fc8766a344bb73d3fe6360c61d036e2eeedfd9ecdb86a0498d7849ed591f0",
"3e2fc73ee22c4986111423dd20e8db317a313c9df29fa5aa3090f27097ecc4e1a9",

(continues on next page)

272 Chapter 10. JSON-RPC API



FISCO BCOS EN Documentation, Release v2.2.0

(continued from previous page)

"3fa7d31ad5c6e7bba3f99f9efc03ed8dd97cb1504003c34ad6bde5a662481f00a0"
]

},
{

"left": [
"cd46118c0e99be585ffcf50423630348dbc486e54e9d9293a6a8754020a68a92",
"3be78209b3e3c83af3668ec3192b5bf232531323ef66b66de80a11f386270132",
"bd3a11d74a3fd79b1e1ea17e45b76eda4d25f6a5ec7fc5f067ea0d086b1ce70f"

],
"right": [
"6a6cefef8b48e455287a8c8694b06f4f7cb7950017ab048d6e6bdd8029f9f8c9",
"0a27c5ee02e618d919d228e6a754dc201d299c91c9e4420a48783bb6fcd09be5"

]
},
{

"left": [],
"right": []

}
],
"transactionReceipt": {

"blockHash":
→˓"0xcd31b05e466bce99460b1ed70d6069fdfbb15e6eef84e9b9e4534358edb3899a",

"blockNumber": "0x5",
"contractAddress": "0x0000000000000000000000000000000000000000",
"from": "0x148947262ec5e21739fe3a931c29e8b84ee34a0f",
"gasUsed": "0x21dc1b",
"input":

→˓"0x8a42ebe90000000000000000000000000000000000000000000000000000000000000040000000000000000000000000000000000000000000000000000000003b9aca00000000000000000000000000000000000000000000000000000000000000000a3564646636663863653800000000000000000000000000000000000000000000
→˓",

"logs": [],
"logsBloom":

→˓"0x00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
→˓",

"output": "0x",
"root": "0xc3b4185963c78a4ca8eb90240e5cd95371d7217a9ce2bfa1149d53f79c73afbb",
"status": "0x0",
"to": "0xd6c8a04b8826b0a37c6d4aa0eaa8644d8e35b79f",
"transactionHash":

→˓"0xd2c12e211315ef09dbad53407bc820d062780232841534954f9c23ab11d8ab4c",
"transactionIndex": "0x32"

}
}

}

10.28 Error codes

10.28.1 RPC error code

When a rpc call is made, the Server will reply with a response, which contains error result field, which includes as
follows:

• code: A Number that indicates the error type that occurred.

• message: A String providing a short description of the error.

• data: A Primitive or Structured value that contains additional information about the error. This may be
omitted.

There are 2 types of error code: JSON-RPC standard error code and FISCO BCOS RPC error code.

10.28. Error codes 273



FISCO BCOS EN Documentation, Release v2.2.0

JSON-RPC standard error code

Standard error codes and their corresponding meanings are as follows:

FISCO BCOS RPC error code

FISCO BCOS RPC error codes and their corresponding meanings are as follows:

10.29 Transaction receipt status list

10.29.1 Precompiled Service API error code

274 Chapter 10. JSON-RPC API



CHAPTER 11

FAQ (Revision in progress)

11.1 Version

Q: What changes have been made to FISCO BCOS version 2.0 compares to previous versions? A: Please refer to
here.

Q: How do developers interact with the FISCO BCOS platform? A: FISCO BCOS provides multiple ways for
developers to interact with the platform. Please refer as follows:

• FISCO BCOS 2.0 version provides JSON-RPC interface. For the detail, please refer to here.

• FISCO BCOS 2.0 version provides Web3SDK to help developers quickly implement applications. For the
detail, please refer to here.

• FISCO BCOS version 2.0 provides a console to help users quickly understand how to use FISCO BCOS.
For the detail, please refer to here.

Q: How to build FISCO BCOS 2.0 version? A: FISCO BCOS supports multiple building methods. The common
methods are:

• build_chain.sh: It is suitable for developer experience and testing FISCO BCOS alliance chain. For the
detail, please refer to here。

• FISCO-Generator：For deploying and maintaining the FISCO BCOS Alliance Chain with enterprise users.
For the detail, please refer to here。

Q: What is the difference on the smart contract between FISCO BCOS 2.0 version and the previous version?
And how is the compatibility? A: FISCO BCOS version 2.0 supports the latest Solidity contract and precompile
contract. For the detail, please [refer to here] (./manual/smart_contract.md).

Q: What is the difference between the national cryptographic version and the normal version? A: The national
cryptography version FISCO BCOS replaces the cryptographic algorithms of underlying modules such as trans-
action signature verification, p2p network connection, node connection, and data disk encryption with the national
cryptography algorithm. Meanwhile, in compiling version and certificate, disk encryption, and solidity compiling
java, there are some difference on web3sdk using national cryptography version and normal version, please refer
to [refer to here] (./manual/guomi_crypto.md).

Q: Does it support to upgrade to 2.0 version from 1.3 or 1.5? A: It does not.

275



FISCO BCOS EN Documentation, Release v2.2.0

11.2 Console

Q: Is the console instruction case sensitive? A: It is case-sensitive. The command will match exactly, and tab
can be used to complete your command.

Q:When adding to the Sealer list or the Observer list, it will report error as nodeID is not in network, why? A:
The nodes that adds to the Sealer list and the Observer list must be a member of the nodeID list that connects to
the peer.

Q: To delete node will report error as nodeID is not in group peers, why? A: The node to be delete must be the
peer of the group displayed in getGroupPeers

Q: Can the RemoveNodes (non-group nodes) synchronize group data? A: RemoveNodes does not participate in
the consensus, synchronization, and block generation within the group. RemoveNodes can add the exit node as
Sealer/Observer through the command of console addSealer/addObserver.

Q: If the node belongs to a different group, can it support querying information of multiple groups? A: Yes, when
you enter the console, you can input the groupID you want to view: ./start [groupID]

11.3 FISCO BCOS using

Q: Where to get Ver 2.0 certificates? A: Please read Certificates Decsription

Q: What fields are contained in the transaction structure of Ver 2.0? A: Please read here Q: What are the system
configuration, group configuration, and node configuration? A: System configuration refers to some configuration
items that affect the ledger function and require the consensus of the ledger node in the node configuration. Group
configuration refers to the configuration of the group which the node belongs to. Each group of nodes has an
independent configuration. Node configuration refers to all configurable items.

Q: Can the group configuration be changed? A: Whether the configuration item could be changed can be measured
by:

• The node that is first time to launch and has generated a genesis block can not be modified. This type of
configuration is placed in the group.x.genesis file, where x is the group number, and it is unique in the entire
chain.

• To implement consistence in ledger by sending the transaction modification configuration item.

• After the configuration file is modified, the node can be restarted to takes effect. This type of configuration
is placed in the group.x.ini file. After the group configuration is changed, the restart can be changed
locally, the changeable item becomes the local configuration. The group.*.ini file under nodeX/conf is
changed and restarted to takes effect. The involved configuration items are [tx_pool].limit (transaction pool
capacity) and [consensus].ttl (node forwarding number).

Q: Which configurations can the group configuration user change? A: The group can be modified and configured
into consensus changeable configuration and manual changeable configuration.

• consensus changeable configuration: all nodes in the group are the same, and takes effect after consensus.
[consensus].max_trans_num,[consensus].node.X,[tx].gas_limit.

• manual changeable configuration: it is in the group.x.ini file and restarted to take effect after modifi-
cation. It only affects node. The configuration item has [tx_pool].limit.

Q: How to change and inquire the consensus changeable configuration? A: Consensus changeable configuration
can be changed through console. It can be inquired through console and RPC interface. For detail, please [refer
to here] (./design/rpc.md).

• [consensus].max_trans_num,[tx].gas_limit is changed by using the interface setSystemConfigByKey, and
the corresponding configuration items are tx_count_limit, tx_gas_limit. See setSystemConfigByKey -h for
details.

• [consensus].node.X’s change refers to node management. The console interface refer to addSealer, addOb-
server, removeNode. For detail, please refer to Node Management.

276 Chapter 11. FAQ (Revision in progress)

design/protocol_description.html#rlp


FISCO BCOS EN Documentation, Release v2.2.0

Q: What is the difference between Observer node and Sealer node in group? A: Observer node can synchronize
the group data, but cannot participate in consensus. Consensus nodes have the Observer permission and participate
in consensus.

Q: How to incorporate contract into CNS management? A: When contract is deployed, to call the CNS contract
interface, and to compile the information of contract name, version, and address information into the CNS list.

Q: How to query the contract CNS list? A: To query CNS list through the command of web3sdk console, and the
query command is queried according to the contract name.

Q: Why can’t local SDK connect to FISCO BCOS nodes on cloud servers? A:

1. Check the node configuration on the cloud server to see if Channel is listening for IP over the extranet,
rather than 127.0.0.1. Port Description Refer here

2. Check the console provided by the cloud manufacturer of the cloud server, check whether the security group
is configured, and open the channel port used by FISCO BCOS nodes in the security group.

3. Check that the generated certificate is correct, refer to here

11.4 Web3SDK

Q: What does Web3SDK require to Java version? A: It requires JDK8 version or above

The OpenJDK of yum repository of CentOS lacks JCE (Java Cryptography Extension), which causes Web3SDK
to fail to connect to blockchain node. When using the CentOS operation system, it is recommended to download
it from the OpenJDK website. [Installation Guide] (https://openjdk.java.net/install/index.html)

Q: After the Web3SDK configuration is completed, what is the reason for the failed transaction? A: The ip, port,
group number in applicationContext.xml are incorrectly filled or the node files of ca.crt, sdk.crt, and sdk.key files
are missing.

11.5 Enterprise deployment tool

Q： There is pip cannot be found appears when using enterprise deployment tools. A： The enterprise deployment
tool relies on python pip. To install it with the following command:

$ bash ./scripts/install.sh

Q: When using enterprise deployment tools, the following information appears:

Traceback (most recent call last):
File "./generator", line 19, in <module>
from pys.build import config

File "/data/asherli/generator/pys/build/config.py", line 25, in <module>
import configparse

A: The python configparser module is missing from the system. Please follow the command below to install:

$ pip install configparser

11.4. Web3SDK 277

https://mp.weixin.qq.com/s/XZ0pXEELaj8kXHo32UFprg
./enterprise_tools/operation.md#node-configuration-error-checking
https://openjdk.java.net/


FISCO BCOS EN Documentation, Release v2.2.0

278 Chapter 11. FAQ (Revision in progress)



CHAPTER 12

Community

FISCO BCOS, officially launched in December 2017, is the first China-developed open source consortium
blockchain platform. It was collaboratively built by the FISCO open source working group, which was formed
by Beyondsoft, Huawei, Shenzhen Securities Communications, DCITS, Forms Syntron, Tencent, WeBank, YIBI
Technology, Yuexiu Financial Holdings (Fintech) and more.

12.1 FISCO BCOS resources

• Github homepage

• Technical documents

• Inlightful articles

• Code contribution

• Feedbacks

• Application cases

279

https://github.com/FISCO-BCOS/FISCO-BCOS
https://fisco-bcos-documentation.readthedocs.io
http://mp.weixin.qq.com/mp/homepage?__biz=MzA3MTI5Njg4Mw==&hid=2&sn=4f6d7251fbc4a73ed600e1d6fd61efc1&scene=18#wechat_redirect
https://mp.weixin.qq.com/s/_w_auH8X4SQQWO3lhfNrbQ
https://github.com/FISCO-BCOS/FISCO-BCOS/issues
https://mp.weixin.qq.com/s/cUjuWf1eGMbG3AFq60CBUA


FISCO BCOS EN Documentation, Release v2.2.0

12.2 Join FISCO BCOS community

280 Chapter 12. Community






	Introduction
	New features in 2.0 version
	Compatibility
	Installation
	Tutorials
	Manual (Revision in progress)
	Enterprise deployment tool
	Web3SDK
	Blockchain browser
	JSON-RPC API
	FAQ (Revision in progress)
	Community

